Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image

Similar Problems from Web Search

Share

\frac{4^{1}x^{2}y^{3}}{8^{1}x^{2}y^{7}}
Use the rules of exponents to simplify the expression.
\frac{4^{1}}{8^{1}}x^{2-2}y^{3-7}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{4^{1}}{8^{1}}x^{0}y^{3-7}
Subtract 2 from 2.
\frac{4^{1}}{8^{1}}y^{3-7}
For any number a except 0, a^{0}=1.
\frac{4^{1}}{8^{1}}y^{-4}
Subtract 7 from 3.
\frac{1}{2}\times \frac{1}{y^{4}}
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{2y^{4}})
Cancel out 4x^{2}y^{3} in both numerator and denominator.
-\left(2y^{4}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}y}(2y^{4})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(2y^{4}\right)^{-2}\times 4\times 2y^{4-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-8y^{3}\times \left(2y^{4}\right)^{-2}
Simplify.