Evaluate
\frac{1}{2y^{4}}
Differentiate w.r.t. y
-\frac{2}{y^{5}}
Share
Copied to clipboard
\frac{4^{1}x^{2}y^{3}}{8^{1}x^{2}y^{7}}
Use the rules of exponents to simplify the expression.
\frac{4^{1}}{8^{1}}x^{2-2}y^{3-7}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{4^{1}}{8^{1}}x^{0}y^{3-7}
Subtract 2 from 2.
\frac{4^{1}}{8^{1}}y^{3-7}
For any number a except 0, a^{0}=1.
\frac{4^{1}}{8^{1}}y^{-4}
Subtract 7 from 3.
\frac{1}{2}\times \frac{1}{y^{4}}
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{2y^{4}})
Cancel out 4x^{2}y^{3} in both numerator and denominator.
-\left(2y^{4}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}y}(2y^{4})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(2y^{4}\right)^{-2}\times 4\times 2y^{4-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-8y^{3}\times \left(2y^{4}\right)^{-2}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}