Evaluate
1
Factor
1
Graph
Share
Copied to clipboard
\frac{\left(4x^{2}-9\right)\left(3x-1\right)}{\left(9x^{2}-6x+1\right)\left(2x-3\right)}+\frac{4-x}{1-3x}
Divide \frac{4x^{2}-9}{9x^{2}-6x+1} by \frac{2x-3}{3x-1} by multiplying \frac{4x^{2}-9}{9x^{2}-6x+1} by the reciprocal of \frac{2x-3}{3x-1}.
\frac{\left(2x-3\right)\left(3x-1\right)\left(2x+3\right)}{\left(2x-3\right)\left(3x-1\right)^{2}}+\frac{4-x}{1-3x}
Factor the expressions that are not already factored in \frac{\left(4x^{2}-9\right)\left(3x-1\right)}{\left(9x^{2}-6x+1\right)\left(2x-3\right)}.
\frac{2x+3}{3x-1}+\frac{4-x}{1-3x}
Cancel out \left(2x-3\right)\left(3x-1\right) in both numerator and denominator.
\frac{2x+3}{3x-1}+\frac{-\left(4-x\right)}{3x-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3x-1 and 1-3x is 3x-1. Multiply \frac{4-x}{1-3x} times \frac{-1}{-1}.
\frac{2x+3-\left(4-x\right)}{3x-1}
Since \frac{2x+3}{3x-1} and \frac{-\left(4-x\right)}{3x-1} have the same denominator, add them by adding their numerators.
\frac{2x+3-4+x}{3x-1}
Do the multiplications in 2x+3-\left(4-x\right).
\frac{3x-1}{3x-1}
Combine like terms in 2x+3-4+x.
1
Cancel out 3x-1 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}