Evaluate
\frac{20}{3}+\frac{5}{x}
Expand
\frac{20}{3}+\frac{5}{x}
Graph
Share
Copied to clipboard
\frac{4x^{2}}{x\left(3x-2\right)}\times \frac{15x^{2}-10x}{4x^{3}-3x^{2}}\times \frac{16x^{2}-9}{12x}
Factor the expressions that are not already factored in \frac{4x^{2}}{3x^{2}-2x}.
\frac{4x}{3x-2}\times \frac{15x^{2}-10x}{4x^{3}-3x^{2}}\times \frac{16x^{2}-9}{12x}
Cancel out x in both numerator and denominator.
\frac{4x}{3x-2}\times \frac{5x\left(3x-2\right)}{\left(4x-3\right)x^{2}}\times \frac{16x^{2}-9}{12x}
Factor the expressions that are not already factored in \frac{15x^{2}-10x}{4x^{3}-3x^{2}}.
\frac{4x}{3x-2}\times \frac{5\left(3x-2\right)}{x\left(4x-3\right)}\times \frac{16x^{2}-9}{12x}
Cancel out x in both numerator and denominator.
\frac{4x\times 5\left(3x-2\right)}{\left(3x-2\right)x\left(4x-3\right)}\times \frac{16x^{2}-9}{12x}
Multiply \frac{4x}{3x-2} times \frac{5\left(3x-2\right)}{x\left(4x-3\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{4\times 5}{4x-3}\times \frac{16x^{2}-9}{12x}
Cancel out x\left(3x-2\right) in both numerator and denominator.
\frac{4\times 5\left(16x^{2}-9\right)}{\left(4x-3\right)\times 12x}
Multiply \frac{4\times 5}{4x-3} times \frac{16x^{2}-9}{12x} by multiplying numerator times numerator and denominator times denominator.
\frac{5\left(16x^{2}-9\right)}{3x\left(4x-3\right)}
Cancel out 4 in both numerator and denominator.
\frac{5\left(4x-3\right)\left(4x+3\right)}{3x\left(4x-3\right)}
Factor the expressions that are not already factored.
\frac{5\left(4x+3\right)}{3x}
Cancel out 4x-3 in both numerator and denominator.
\frac{20x+15}{3x}
Expand the expression.
\frac{4x^{2}}{x\left(3x-2\right)}\times \frac{15x^{2}-10x}{4x^{3}-3x^{2}}\times \frac{16x^{2}-9}{12x}
Factor the expressions that are not already factored in \frac{4x^{2}}{3x^{2}-2x}.
\frac{4x}{3x-2}\times \frac{15x^{2}-10x}{4x^{3}-3x^{2}}\times \frac{16x^{2}-9}{12x}
Cancel out x in both numerator and denominator.
\frac{4x}{3x-2}\times \frac{5x\left(3x-2\right)}{\left(4x-3\right)x^{2}}\times \frac{16x^{2}-9}{12x}
Factor the expressions that are not already factored in \frac{15x^{2}-10x}{4x^{3}-3x^{2}}.
\frac{4x}{3x-2}\times \frac{5\left(3x-2\right)}{x\left(4x-3\right)}\times \frac{16x^{2}-9}{12x}
Cancel out x in both numerator and denominator.
\frac{4x\times 5\left(3x-2\right)}{\left(3x-2\right)x\left(4x-3\right)}\times \frac{16x^{2}-9}{12x}
Multiply \frac{4x}{3x-2} times \frac{5\left(3x-2\right)}{x\left(4x-3\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{4\times 5}{4x-3}\times \frac{16x^{2}-9}{12x}
Cancel out x\left(3x-2\right) in both numerator and denominator.
\frac{4\times 5\left(16x^{2}-9\right)}{\left(4x-3\right)\times 12x}
Multiply \frac{4\times 5}{4x-3} times \frac{16x^{2}-9}{12x} by multiplying numerator times numerator and denominator times denominator.
\frac{5\left(16x^{2}-9\right)}{3x\left(4x-3\right)}
Cancel out 4 in both numerator and denominator.
\frac{5\left(4x-3\right)\left(4x+3\right)}{3x\left(4x-3\right)}
Factor the expressions that are not already factored.
\frac{5\left(4x+3\right)}{3x}
Cancel out 4x-3 in both numerator and denominator.
\frac{20x+15}{3x}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}