Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6\times 4x^{2}+2\times 2x-3=0
Multiply both sides of the equation by 18, the least common multiple of 3,9,6.
24x^{2}+2\times 2x-3=0
Multiply 6 and 4 to get 24.
24x^{2}+4x-3=0
Multiply 2 and 2 to get 4.
x=\frac{-4±\sqrt{4^{2}-4\times 24\left(-3\right)}}{2\times 24}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 24 for a, 4 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 24\left(-3\right)}}{2\times 24}
Square 4.
x=\frac{-4±\sqrt{16-96\left(-3\right)}}{2\times 24}
Multiply -4 times 24.
x=\frac{-4±\sqrt{16+288}}{2\times 24}
Multiply -96 times -3.
x=\frac{-4±\sqrt{304}}{2\times 24}
Add 16 to 288.
x=\frac{-4±4\sqrt{19}}{2\times 24}
Take the square root of 304.
x=\frac{-4±4\sqrt{19}}{48}
Multiply 2 times 24.
x=\frac{4\sqrt{19}-4}{48}
Now solve the equation x=\frac{-4±4\sqrt{19}}{48} when ± is plus. Add -4 to 4\sqrt{19}.
x=\frac{\sqrt{19}-1}{12}
Divide -4+4\sqrt{19} by 48.
x=\frac{-4\sqrt{19}-4}{48}
Now solve the equation x=\frac{-4±4\sqrt{19}}{48} when ± is minus. Subtract 4\sqrt{19} from -4.
x=\frac{-\sqrt{19}-1}{12}
Divide -4-4\sqrt{19} by 48.
x=\frac{\sqrt{19}-1}{12} x=\frac{-\sqrt{19}-1}{12}
The equation is now solved.
6\times 4x^{2}+2\times 2x-3=0
Multiply both sides of the equation by 18, the least common multiple of 3,9,6.
24x^{2}+2\times 2x-3=0
Multiply 6 and 4 to get 24.
24x^{2}+4x-3=0
Multiply 2 and 2 to get 4.
24x^{2}+4x=3
Add 3 to both sides. Anything plus zero gives itself.
\frac{24x^{2}+4x}{24}=\frac{3}{24}
Divide both sides by 24.
x^{2}+\frac{4}{24}x=\frac{3}{24}
Dividing by 24 undoes the multiplication by 24.
x^{2}+\frac{1}{6}x=\frac{3}{24}
Reduce the fraction \frac{4}{24} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{1}{6}x=\frac{1}{8}
Reduce the fraction \frac{3}{24} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{1}{6}x+\left(\frac{1}{12}\right)^{2}=\frac{1}{8}+\left(\frac{1}{12}\right)^{2}
Divide \frac{1}{6}, the coefficient of the x term, by 2 to get \frac{1}{12}. Then add the square of \frac{1}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{6}x+\frac{1}{144}=\frac{1}{8}+\frac{1}{144}
Square \frac{1}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{6}x+\frac{1}{144}=\frac{19}{144}
Add \frac{1}{8} to \frac{1}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{12}\right)^{2}=\frac{19}{144}
Factor x^{2}+\frac{1}{6}x+\frac{1}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{12}\right)^{2}}=\sqrt{\frac{19}{144}}
Take the square root of both sides of the equation.
x+\frac{1}{12}=\frac{\sqrt{19}}{12} x+\frac{1}{12}=-\frac{\sqrt{19}}{12}
Simplify.
x=\frac{\sqrt{19}-1}{12} x=\frac{-\sqrt{19}-1}{12}
Subtract \frac{1}{12} from both sides of the equation.