Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\times 4x^{2}-2\times 33x+14=0
Multiply both sides of the equation by 6, the least common multiple of 2,3,6.
12x^{2}-2\times 33x+14=0
Multiply 3 and 4 to get 12.
12x^{2}-66x+14=0
Multiply -2 and 33 to get -66.
x=\frac{-\left(-66\right)±\sqrt{\left(-66\right)^{2}-4\times 12\times 14}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, -66 for b, and 14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-66\right)±\sqrt{4356-4\times 12\times 14}}{2\times 12}
Square -66.
x=\frac{-\left(-66\right)±\sqrt{4356-48\times 14}}{2\times 12}
Multiply -4 times 12.
x=\frac{-\left(-66\right)±\sqrt{4356-672}}{2\times 12}
Multiply -48 times 14.
x=\frac{-\left(-66\right)±\sqrt{3684}}{2\times 12}
Add 4356 to -672.
x=\frac{-\left(-66\right)±2\sqrt{921}}{2\times 12}
Take the square root of 3684.
x=\frac{66±2\sqrt{921}}{2\times 12}
The opposite of -66 is 66.
x=\frac{66±2\sqrt{921}}{24}
Multiply 2 times 12.
x=\frac{2\sqrt{921}+66}{24}
Now solve the equation x=\frac{66±2\sqrt{921}}{24} when ± is plus. Add 66 to 2\sqrt{921}.
x=\frac{\sqrt{921}}{12}+\frac{11}{4}
Divide 66+2\sqrt{921} by 24.
x=\frac{66-2\sqrt{921}}{24}
Now solve the equation x=\frac{66±2\sqrt{921}}{24} when ± is minus. Subtract 2\sqrt{921} from 66.
x=-\frac{\sqrt{921}}{12}+\frac{11}{4}
Divide 66-2\sqrt{921} by 24.
x=\frac{\sqrt{921}}{12}+\frac{11}{4} x=-\frac{\sqrt{921}}{12}+\frac{11}{4}
The equation is now solved.
3\times 4x^{2}-2\times 33x+14=0
Multiply both sides of the equation by 6, the least common multiple of 2,3,6.
12x^{2}-2\times 33x+14=0
Multiply 3 and 4 to get 12.
12x^{2}-66x+14=0
Multiply -2 and 33 to get -66.
12x^{2}-66x=-14
Subtract 14 from both sides. Anything subtracted from zero gives its negation.
\frac{12x^{2}-66x}{12}=-\frac{14}{12}
Divide both sides by 12.
x^{2}+\left(-\frac{66}{12}\right)x=-\frac{14}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}-\frac{11}{2}x=-\frac{14}{12}
Reduce the fraction \frac{-66}{12} to lowest terms by extracting and canceling out 6.
x^{2}-\frac{11}{2}x=-\frac{7}{6}
Reduce the fraction \frac{-14}{12} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{11}{2}x+\left(-\frac{11}{4}\right)^{2}=-\frac{7}{6}+\left(-\frac{11}{4}\right)^{2}
Divide -\frac{11}{2}, the coefficient of the x term, by 2 to get -\frac{11}{4}. Then add the square of -\frac{11}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{2}x+\frac{121}{16}=-\frac{7}{6}+\frac{121}{16}
Square -\frac{11}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{2}x+\frac{121}{16}=\frac{307}{48}
Add -\frac{7}{6} to \frac{121}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{4}\right)^{2}=\frac{307}{48}
Factor x^{2}-\frac{11}{2}x+\frac{121}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{4}\right)^{2}}=\sqrt{\frac{307}{48}}
Take the square root of both sides of the equation.
x-\frac{11}{4}=\frac{\sqrt{921}}{12} x-\frac{11}{4}=-\frac{\sqrt{921}}{12}
Simplify.
x=\frac{\sqrt{921}}{12}+\frac{11}{4} x=-\frac{\sqrt{921}}{12}+\frac{11}{4}
Add \frac{11}{4} to both sides of the equation.