Evaluate
-\frac{\left(2x+3\right)^{2}}{3-2x}
Expand
\frac{4x^{2}+12x+9}{2x-3}
Graph
Share
Copied to clipboard
\frac{\left(4x^{2}+6x\right)\left(10x^{2}+13x-3\right)}{\left(1-5x\right)\left(6x-4x^{2}\right)}
Multiply \frac{4x^{2}+6x}{1-5x} times \frac{10x^{2}+13x-3}{6x-4x^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{2x\left(5x-1\right)\left(2x+3\right)^{2}}{2x\left(-5x+1\right)\left(-2x+3\right)}
Factor the expressions that are not already factored.
\frac{-2x\left(-5x+1\right)\left(2x+3\right)^{2}}{2x\left(-5x+1\right)\left(-2x+3\right)}
Extract the negative sign in -1+5x.
\frac{-\left(2x+3\right)^{2}}{-2x+3}
Cancel out 2x\left(-5x+1\right) in both numerator and denominator.
\frac{-4x^{2}-12x-9}{-2x+3}
Expand the expression.
\frac{\left(4x^{2}+6x\right)\left(10x^{2}+13x-3\right)}{\left(1-5x\right)\left(6x-4x^{2}\right)}
Multiply \frac{4x^{2}+6x}{1-5x} times \frac{10x^{2}+13x-3}{6x-4x^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{2x\left(5x-1\right)\left(2x+3\right)^{2}}{2x\left(-5x+1\right)\left(-2x+3\right)}
Factor the expressions that are not already factored.
\frac{-2x\left(-5x+1\right)\left(2x+3\right)^{2}}{2x\left(-5x+1\right)\left(-2x+3\right)}
Extract the negative sign in -1+5x.
\frac{-\left(2x+3\right)^{2}}{-2x+3}
Cancel out 2x\left(-5x+1\right) in both numerator and denominator.
\frac{-4x^{2}-12x-9}{-2x+3}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}