Solve for x
x\leq \frac{19}{4}
Graph
Share
Copied to clipboard
6\left(4x+6\right)\geq 5\left(8x-8\right)
Multiply both sides of the equation by 30, the least common multiple of 5,6. Since 30 is positive, the inequality direction remains the same.
24x+36\geq 5\left(8x-8\right)
Use the distributive property to multiply 6 by 4x+6.
24x+36\geq 40x-40
Use the distributive property to multiply 5 by 8x-8.
24x+36-40x\geq -40
Subtract 40x from both sides.
-16x+36\geq -40
Combine 24x and -40x to get -16x.
-16x\geq -40-36
Subtract 36 from both sides.
-16x\geq -76
Subtract 36 from -40 to get -76.
x\leq \frac{-76}{-16}
Divide both sides by -16. Since -16 is negative, the inequality direction is changed.
x\leq \frac{19}{4}
Reduce the fraction \frac{-76}{-16} to lowest terms by extracting and canceling out -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}