Solve for x
x = \frac{41}{4} = 10\frac{1}{4} = 10.25
Graph
Share
Copied to clipboard
\frac{4x+4}{2\times 15}=\frac{3}{2}
Add 13 and 2 to get 15.
\frac{4x+4}{30}=\frac{3}{2}
Multiply 2 and 15 to get 30.
\frac{2}{15}x+\frac{2}{15}=\frac{3}{2}
Divide each term of 4x+4 by 30 to get \frac{2}{15}x+\frac{2}{15}.
\frac{2}{15}x=\frac{3}{2}-\frac{2}{15}
Subtract \frac{2}{15} from both sides.
\frac{2}{15}x=\frac{45}{30}-\frac{4}{30}
Least common multiple of 2 and 15 is 30. Convert \frac{3}{2} and \frac{2}{15} to fractions with denominator 30.
\frac{2}{15}x=\frac{45-4}{30}
Since \frac{45}{30} and \frac{4}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{15}x=\frac{41}{30}
Subtract 4 from 45 to get 41.
x=\frac{41}{30}\times \frac{15}{2}
Multiply both sides by \frac{15}{2}, the reciprocal of \frac{2}{15}.
x=\frac{41\times 15}{30\times 2}
Multiply \frac{41}{30} times \frac{15}{2} by multiplying numerator times numerator and denominator times denominator.
x=\frac{615}{60}
Do the multiplications in the fraction \frac{41\times 15}{30\times 2}.
x=\frac{41}{4}
Reduce the fraction \frac{615}{60} to lowest terms by extracting and canceling out 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}