Solve for x
x=-\frac{4-3y}{3y+4}
y\neq -\frac{4}{3}
Solve for y
y=-\frac{4\left(x+1\right)}{3\left(x-1\right)}
x\neq 1
Graph
Share
Copied to clipboard
4x+4=3y\left(-x+1\right)
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by -x+1.
4x+4=-3yx+3y
Use the distributive property to multiply 3y by -x+1.
4x+4+3yx=3y
Add 3yx to both sides.
4x+3yx=3y-4
Subtract 4 from both sides.
\left(4+3y\right)x=3y-4
Combine all terms containing x.
\left(3y+4\right)x=3y-4
The equation is in standard form.
\frac{\left(3y+4\right)x}{3y+4}=\frac{3y-4}{3y+4}
Divide both sides by 3y+4.
x=\frac{3y-4}{3y+4}
Dividing by 3y+4 undoes the multiplication by 3y+4.
x=\frac{3y-4}{3y+4}\text{, }x\neq 1
Variable x cannot be equal to 1.
4x+4=3y\left(-x+1\right)
Multiply both sides of the equation by -x+1.
4x+4=-3yx+3y
Use the distributive property to multiply 3y by -x+1.
-3yx+3y=4x+4
Swap sides so that all variable terms are on the left hand side.
\left(-3x+3\right)y=4x+4
Combine all terms containing y.
\left(3-3x\right)y=4x+4
The equation is in standard form.
\frac{\left(3-3x\right)y}{3-3x}=\frac{4x+4}{3-3x}
Divide both sides by -3x+3.
y=\frac{4x+4}{3-3x}
Dividing by -3x+3 undoes the multiplication by -3x+3.
y=\frac{4\left(x+1\right)}{3\left(1-x\right)}
Divide 4+4x by -3x+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}