\frac { 4 x + 3 } { 2 } + \frac { 3,5 } { 4 x + 3 } = 4
Solve for x
x=1
x=-0,5
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac { 4 x + 3 } { 2 } + \frac { 3,5 } { 4 x + 3 } = 4
Share
Copied to clipboard
\left(4x+3\right)\left(4x+3\right)+2\times 3,5=8\left(4x+3\right)
Variable x cannot be equal to -\frac{3}{4} since division by zero is not defined. Multiply both sides of the equation by 2\left(4x+3\right), the least common multiple of 2;4x+3.
\left(4x+3\right)^{2}+2\times 3,5=8\left(4x+3\right)
Multiply 4x+3 and 4x+3 to get \left(4x+3\right)^{2}.
16x^{2}+24x+9+2\times 3,5=8\left(4x+3\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4x+3\right)^{2}.
16x^{2}+24x+9+7=8\left(4x+3\right)
Multiply 2 and 3,5 to get 7.
16x^{2}+24x+16=8\left(4x+3\right)
Add 9 and 7 to get 16.
16x^{2}+24x+16=32x+24
Use the distributive property to multiply 8 by 4x+3.
16x^{2}+24x+16-32x=24
Subtract 32x from both sides.
16x^{2}-8x+16=24
Combine 24x and -32x to get -8x.
16x^{2}-8x+16-24=0
Subtract 24 from both sides.
16x^{2}-8x-8=0
Subtract 24 from 16 to get -8.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 16\left(-8\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -8 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 16\left(-8\right)}}{2\times 16}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-64\left(-8\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-8\right)±\sqrt{64+512}}{2\times 16}
Multiply -64 times -8.
x=\frac{-\left(-8\right)±\sqrt{576}}{2\times 16}
Add 64 to 512.
x=\frac{-\left(-8\right)±24}{2\times 16}
Take the square root of 576.
x=\frac{8±24}{2\times 16}
The opposite of -8 is 8.
x=\frac{8±24}{32}
Multiply 2 times 16.
x=\frac{32}{32}
Now solve the equation x=\frac{8±24}{32} when ± is plus. Add 8 to 24.
x=1
Divide 32 by 32.
x=-\frac{16}{32}
Now solve the equation x=\frac{8±24}{32} when ± is minus. Subtract 24 from 8.
x=-\frac{1}{2}
Reduce the fraction \frac{-16}{32} to lowest terms by extracting and canceling out 16.
x=1 x=-\frac{1}{2}
The equation is now solved.
\left(4x+3\right)\left(4x+3\right)+2\times 3,5=8\left(4x+3\right)
Variable x cannot be equal to -\frac{3}{4} since division by zero is not defined. Multiply both sides of the equation by 2\left(4x+3\right), the least common multiple of 2;4x+3.
\left(4x+3\right)^{2}+2\times 3,5=8\left(4x+3\right)
Multiply 4x+3 and 4x+3 to get \left(4x+3\right)^{2}.
16x^{2}+24x+9+2\times 3,5=8\left(4x+3\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4x+3\right)^{2}.
16x^{2}+24x+9+7=8\left(4x+3\right)
Multiply 2 and 3,5 to get 7.
16x^{2}+24x+16=8\left(4x+3\right)
Add 9 and 7 to get 16.
16x^{2}+24x+16=32x+24
Use the distributive property to multiply 8 by 4x+3.
16x^{2}+24x+16-32x=24
Subtract 32x from both sides.
16x^{2}-8x+16=24
Combine 24x and -32x to get -8x.
16x^{2}-8x=24-16
Subtract 16 from both sides.
16x^{2}-8x=8
Subtract 16 from 24 to get 8.
\frac{16x^{2}-8x}{16}=\frac{8}{16}
Divide both sides by 16.
x^{2}+\left(-\frac{8}{16}\right)x=\frac{8}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}-\frac{1}{2}x=\frac{8}{16}
Reduce the fraction \frac{-8}{16} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{1}{2}x=\frac{1}{2}
Reduce the fraction \frac{8}{16} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{9}{16}
Add \frac{1}{2} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{4}\right)^{2}=\frac{9}{16}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{3}{4} x-\frac{1}{4}=-\frac{3}{4}
Simplify.
x=1 x=-\frac{1}{2}
Add \frac{1}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}