Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-3\right)^{2}\left(4x+23\right)-\left(x^{2}-9\right)\left(3x+20\right)-\left(x+3\right)^{2}\left(x+33\right)=0
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)^{2}\left(x+3\right)^{2}, the least common multiple of x^{2}+6x+9,x^{2}-9,x^{2}-6x+9.
\left(x^{2}-6x+9\right)\left(4x+23\right)-\left(x^{2}-9\right)\left(3x+20\right)-\left(x+3\right)^{2}\left(x+33\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
4x^{3}-x^{2}-102x+207-\left(x^{2}-9\right)\left(3x+20\right)-\left(x+3\right)^{2}\left(x+33\right)=0
Use the distributive property to multiply x^{2}-6x+9 by 4x+23 and combine like terms.
4x^{3}-x^{2}-102x+207-\left(3x^{3}+20x^{2}-27x-180\right)-\left(x+3\right)^{2}\left(x+33\right)=0
Use the distributive property to multiply x^{2}-9 by 3x+20.
4x^{3}-x^{2}-102x+207-3x^{3}-20x^{2}+27x+180-\left(x+3\right)^{2}\left(x+33\right)=0
To find the opposite of 3x^{3}+20x^{2}-27x-180, find the opposite of each term.
x^{3}-x^{2}-102x+207-20x^{2}+27x+180-\left(x+3\right)^{2}\left(x+33\right)=0
Combine 4x^{3} and -3x^{3} to get x^{3}.
x^{3}-21x^{2}-102x+207+27x+180-\left(x+3\right)^{2}\left(x+33\right)=0
Combine -x^{2} and -20x^{2} to get -21x^{2}.
x^{3}-21x^{2}-75x+207+180-\left(x+3\right)^{2}\left(x+33\right)=0
Combine -102x and 27x to get -75x.
x^{3}-21x^{2}-75x+387-\left(x+3\right)^{2}\left(x+33\right)=0
Add 207 and 180 to get 387.
x^{3}-21x^{2}-75x+387-\left(x^{2}+6x+9\right)\left(x+33\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{3}-21x^{2}-75x+387-\left(x^{3}+39x^{2}+207x+297\right)=0
Use the distributive property to multiply x^{2}+6x+9 by x+33 and combine like terms.
x^{3}-21x^{2}-75x+387-x^{3}-39x^{2}-207x-297=0
To find the opposite of x^{3}+39x^{2}+207x+297, find the opposite of each term.
-21x^{2}-75x+387-39x^{2}-207x-297=0
Combine x^{3} and -x^{3} to get 0.
-60x^{2}-75x+387-207x-297=0
Combine -21x^{2} and -39x^{2} to get -60x^{2}.
-60x^{2}-282x+387-297=0
Combine -75x and -207x to get -282x.
-60x^{2}-282x+90=0
Subtract 297 from 387 to get 90.
-10x^{2}-47x+15=0
Divide both sides by 6.
a+b=-47 ab=-10\times 15=-150
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -10x^{2}+ax+bx+15. To find a and b, set up a system to be solved.
1,-150 2,-75 3,-50 5,-30 6,-25 10,-15
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -150.
1-150=-149 2-75=-73 3-50=-47 5-30=-25 6-25=-19 10-15=-5
Calculate the sum for each pair.
a=3 b=-50
The solution is the pair that gives sum -47.
\left(-10x^{2}+3x\right)+\left(-50x+15\right)
Rewrite -10x^{2}-47x+15 as \left(-10x^{2}+3x\right)+\left(-50x+15\right).
-x\left(10x-3\right)-5\left(10x-3\right)
Factor out -x in the first and -5 in the second group.
\left(10x-3\right)\left(-x-5\right)
Factor out common term 10x-3 by using distributive property.
x=\frac{3}{10} x=-5
To find equation solutions, solve 10x-3=0 and -x-5=0.
\left(x-3\right)^{2}\left(4x+23\right)-\left(x^{2}-9\right)\left(3x+20\right)-\left(x+3\right)^{2}\left(x+33\right)=0
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)^{2}\left(x+3\right)^{2}, the least common multiple of x^{2}+6x+9,x^{2}-9,x^{2}-6x+9.
\left(x^{2}-6x+9\right)\left(4x+23\right)-\left(x^{2}-9\right)\left(3x+20\right)-\left(x+3\right)^{2}\left(x+33\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
4x^{3}-x^{2}-102x+207-\left(x^{2}-9\right)\left(3x+20\right)-\left(x+3\right)^{2}\left(x+33\right)=0
Use the distributive property to multiply x^{2}-6x+9 by 4x+23 and combine like terms.
4x^{3}-x^{2}-102x+207-\left(3x^{3}+20x^{2}-27x-180\right)-\left(x+3\right)^{2}\left(x+33\right)=0
Use the distributive property to multiply x^{2}-9 by 3x+20.
4x^{3}-x^{2}-102x+207-3x^{3}-20x^{2}+27x+180-\left(x+3\right)^{2}\left(x+33\right)=0
To find the opposite of 3x^{3}+20x^{2}-27x-180, find the opposite of each term.
x^{3}-x^{2}-102x+207-20x^{2}+27x+180-\left(x+3\right)^{2}\left(x+33\right)=0
Combine 4x^{3} and -3x^{3} to get x^{3}.
x^{3}-21x^{2}-102x+207+27x+180-\left(x+3\right)^{2}\left(x+33\right)=0
Combine -x^{2} and -20x^{2} to get -21x^{2}.
x^{3}-21x^{2}-75x+207+180-\left(x+3\right)^{2}\left(x+33\right)=0
Combine -102x and 27x to get -75x.
x^{3}-21x^{2}-75x+387-\left(x+3\right)^{2}\left(x+33\right)=0
Add 207 and 180 to get 387.
x^{3}-21x^{2}-75x+387-\left(x^{2}+6x+9\right)\left(x+33\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{3}-21x^{2}-75x+387-\left(x^{3}+39x^{2}+207x+297\right)=0
Use the distributive property to multiply x^{2}+6x+9 by x+33 and combine like terms.
x^{3}-21x^{2}-75x+387-x^{3}-39x^{2}-207x-297=0
To find the opposite of x^{3}+39x^{2}+207x+297, find the opposite of each term.
-21x^{2}-75x+387-39x^{2}-207x-297=0
Combine x^{3} and -x^{3} to get 0.
-60x^{2}-75x+387-207x-297=0
Combine -21x^{2} and -39x^{2} to get -60x^{2}.
-60x^{2}-282x+387-297=0
Combine -75x and -207x to get -282x.
-60x^{2}-282x+90=0
Subtract 297 from 387 to get 90.
x=\frac{-\left(-282\right)±\sqrt{\left(-282\right)^{2}-4\left(-60\right)\times 90}}{2\left(-60\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -60 for a, -282 for b, and 90 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-282\right)±\sqrt{79524-4\left(-60\right)\times 90}}{2\left(-60\right)}
Square -282.
x=\frac{-\left(-282\right)±\sqrt{79524+240\times 90}}{2\left(-60\right)}
Multiply -4 times -60.
x=\frac{-\left(-282\right)±\sqrt{79524+21600}}{2\left(-60\right)}
Multiply 240 times 90.
x=\frac{-\left(-282\right)±\sqrt{101124}}{2\left(-60\right)}
Add 79524 to 21600.
x=\frac{-\left(-282\right)±318}{2\left(-60\right)}
Take the square root of 101124.
x=\frac{282±318}{2\left(-60\right)}
The opposite of -282 is 282.
x=\frac{282±318}{-120}
Multiply 2 times -60.
x=\frac{600}{-120}
Now solve the equation x=\frac{282±318}{-120} when ± is plus. Add 282 to 318.
x=-5
Divide 600 by -120.
x=-\frac{36}{-120}
Now solve the equation x=\frac{282±318}{-120} when ± is minus. Subtract 318 from 282.
x=\frac{3}{10}
Reduce the fraction \frac{-36}{-120} to lowest terms by extracting and canceling out 12.
x=-5 x=\frac{3}{10}
The equation is now solved.
\left(x-3\right)^{2}\left(4x+23\right)-\left(x^{2}-9\right)\left(3x+20\right)-\left(x+3\right)^{2}\left(x+33\right)=0
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)^{2}\left(x+3\right)^{2}, the least common multiple of x^{2}+6x+9,x^{2}-9,x^{2}-6x+9.
\left(x^{2}-6x+9\right)\left(4x+23\right)-\left(x^{2}-9\right)\left(3x+20\right)-\left(x+3\right)^{2}\left(x+33\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
4x^{3}-x^{2}-102x+207-\left(x^{2}-9\right)\left(3x+20\right)-\left(x+3\right)^{2}\left(x+33\right)=0
Use the distributive property to multiply x^{2}-6x+9 by 4x+23 and combine like terms.
4x^{3}-x^{2}-102x+207-\left(3x^{3}+20x^{2}-27x-180\right)-\left(x+3\right)^{2}\left(x+33\right)=0
Use the distributive property to multiply x^{2}-9 by 3x+20.
4x^{3}-x^{2}-102x+207-3x^{3}-20x^{2}+27x+180-\left(x+3\right)^{2}\left(x+33\right)=0
To find the opposite of 3x^{3}+20x^{2}-27x-180, find the opposite of each term.
x^{3}-x^{2}-102x+207-20x^{2}+27x+180-\left(x+3\right)^{2}\left(x+33\right)=0
Combine 4x^{3} and -3x^{3} to get x^{3}.
x^{3}-21x^{2}-102x+207+27x+180-\left(x+3\right)^{2}\left(x+33\right)=0
Combine -x^{2} and -20x^{2} to get -21x^{2}.
x^{3}-21x^{2}-75x+207+180-\left(x+3\right)^{2}\left(x+33\right)=0
Combine -102x and 27x to get -75x.
x^{3}-21x^{2}-75x+387-\left(x+3\right)^{2}\left(x+33\right)=0
Add 207 and 180 to get 387.
x^{3}-21x^{2}-75x+387-\left(x^{2}+6x+9\right)\left(x+33\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{3}-21x^{2}-75x+387-\left(x^{3}+39x^{2}+207x+297\right)=0
Use the distributive property to multiply x^{2}+6x+9 by x+33 and combine like terms.
x^{3}-21x^{2}-75x+387-x^{3}-39x^{2}-207x-297=0
To find the opposite of x^{3}+39x^{2}+207x+297, find the opposite of each term.
-21x^{2}-75x+387-39x^{2}-207x-297=0
Combine x^{3} and -x^{3} to get 0.
-60x^{2}-75x+387-207x-297=0
Combine -21x^{2} and -39x^{2} to get -60x^{2}.
-60x^{2}-282x+387-297=0
Combine -75x and -207x to get -282x.
-60x^{2}-282x+90=0
Subtract 297 from 387 to get 90.
-60x^{2}-282x=-90
Subtract 90 from both sides. Anything subtracted from zero gives its negation.
\frac{-60x^{2}-282x}{-60}=-\frac{90}{-60}
Divide both sides by -60.
x^{2}+\left(-\frac{282}{-60}\right)x=-\frac{90}{-60}
Dividing by -60 undoes the multiplication by -60.
x^{2}+\frac{47}{10}x=-\frac{90}{-60}
Reduce the fraction \frac{-282}{-60} to lowest terms by extracting and canceling out 6.
x^{2}+\frac{47}{10}x=\frac{3}{2}
Reduce the fraction \frac{-90}{-60} to lowest terms by extracting and canceling out 30.
x^{2}+\frac{47}{10}x+\left(\frac{47}{20}\right)^{2}=\frac{3}{2}+\left(\frac{47}{20}\right)^{2}
Divide \frac{47}{10}, the coefficient of the x term, by 2 to get \frac{47}{20}. Then add the square of \frac{47}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{47}{10}x+\frac{2209}{400}=\frac{3}{2}+\frac{2209}{400}
Square \frac{47}{20} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{47}{10}x+\frac{2209}{400}=\frac{2809}{400}
Add \frac{3}{2} to \frac{2209}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{47}{20}\right)^{2}=\frac{2809}{400}
Factor x^{2}+\frac{47}{10}x+\frac{2209}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{47}{20}\right)^{2}}=\sqrt{\frac{2809}{400}}
Take the square root of both sides of the equation.
x+\frac{47}{20}=\frac{53}{20} x+\frac{47}{20}=-\frac{53}{20}
Simplify.
x=\frac{3}{10} x=-5
Subtract \frac{47}{20} from both sides of the equation.