Solve for x
x=\frac{5y}{8}-\frac{3}{32}
y\neq -\frac{1}{4}
Solve for y
y=\frac{8x}{5}+\frac{3}{20}
x\neq -\frac{1}{4}
Graph
Share
Copied to clipboard
8\left(4x+1\right)=5\left(4y+1\right)
Multiply both sides of the equation by 8\left(4y+1\right), the least common multiple of 4y+1,8.
32x+8=5\left(4y+1\right)
Use the distributive property to multiply 8 by 4x+1.
32x+8=20y+5
Use the distributive property to multiply 5 by 4y+1.
32x=20y+5-8
Subtract 8 from both sides.
32x=20y-3
Subtract 8 from 5 to get -3.
\frac{32x}{32}=\frac{20y-3}{32}
Divide both sides by 32.
x=\frac{20y-3}{32}
Dividing by 32 undoes the multiplication by 32.
x=\frac{5y}{8}-\frac{3}{32}
Divide 20y-3 by 32.
8\left(4x+1\right)=5\left(4y+1\right)
Variable y cannot be equal to -\frac{1}{4} since division by zero is not defined. Multiply both sides of the equation by 8\left(4y+1\right), the least common multiple of 4y+1,8.
32x+8=5\left(4y+1\right)
Use the distributive property to multiply 8 by 4x+1.
32x+8=20y+5
Use the distributive property to multiply 5 by 4y+1.
20y+5=32x+8
Swap sides so that all variable terms are on the left hand side.
20y=32x+8-5
Subtract 5 from both sides.
20y=32x+3
Subtract 5 from 8 to get 3.
\frac{20y}{20}=\frac{32x+3}{20}
Divide both sides by 20.
y=\frac{32x+3}{20}
Dividing by 20 undoes the multiplication by 20.
y=\frac{8x}{5}+\frac{3}{20}
Divide 32x+3 by 20.
y=\frac{8x}{5}+\frac{3}{20}\text{, }y\neq -\frac{1}{4}
Variable y cannot be equal to -\frac{1}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}