Solve for x
x=\frac{3}{8}=0.375
Graph
Share
Copied to clipboard
\left(4x+1\right)\left(4x+1\right)-6=\left(4x-1\right)\left(4x-1\right)
Variable x cannot be equal to any of the values -\frac{1}{4},\frac{1}{4} since division by zero is not defined. Multiply both sides of the equation by \left(4x-1\right)\left(4x+1\right), the least common multiple of 4x-1,16x^{2}-1,4x+1.
\left(4x+1\right)^{2}-6=\left(4x-1\right)\left(4x-1\right)
Multiply 4x+1 and 4x+1 to get \left(4x+1\right)^{2}.
\left(4x+1\right)^{2}-6=\left(4x-1\right)^{2}
Multiply 4x-1 and 4x-1 to get \left(4x-1\right)^{2}.
16x^{2}+8x+1-6=\left(4x-1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4x+1\right)^{2}.
16x^{2}+8x-5=\left(4x-1\right)^{2}
Subtract 6 from 1 to get -5.
16x^{2}+8x-5=16x^{2}-8x+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-1\right)^{2}.
16x^{2}+8x-5-16x^{2}=-8x+1
Subtract 16x^{2} from both sides.
8x-5=-8x+1
Combine 16x^{2} and -16x^{2} to get 0.
8x-5+8x=1
Add 8x to both sides.
16x-5=1
Combine 8x and 8x to get 16x.
16x=1+5
Add 5 to both sides.
16x=6
Add 1 and 5 to get 6.
x=\frac{6}{16}
Divide both sides by 16.
x=\frac{3}{8}
Reduce the fraction \frac{6}{16} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}