Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5\left(4x+1\right)\left(2x-1\right)-6\left(x-7\right)=180
Multiply both sides of the equation by 30, the least common multiple of 3,2,5.
\left(20x+5\right)\left(2x-1\right)-6\left(x-7\right)=180
Use the distributive property to multiply 5 by 4x+1.
40x^{2}-20x+10x-5-6\left(x-7\right)=180
Apply the distributive property by multiplying each term of 20x+5 by each term of 2x-1.
40x^{2}-10x-5-6\left(x-7\right)=180
Combine -20x and 10x to get -10x.
40x^{2}-10x-5-6x+42=180
Use the distributive property to multiply -6 by 1x-7.
40x^{2}-16x-5+42=180
Combine -10x and -6x to get -16x.
40x^{2}-16x+37=180
Add -5 and 42 to get 37.
40x^{2}-16x+37-180=0
Subtract 180 from both sides.
40x^{2}-16x-143=0
Subtract 180 from 37 to get -143.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 40\left(-143\right)}}{2\times 40}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 40 for a, -16 for b, and -143 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 40\left(-143\right)}}{2\times 40}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256-160\left(-143\right)}}{2\times 40}
Multiply -4 times 40.
x=\frac{-\left(-16\right)±\sqrt{256+22880}}{2\times 40}
Multiply -160 times -143.
x=\frac{-\left(-16\right)±\sqrt{23136}}{2\times 40}
Add 256 to 22880.
x=\frac{-\left(-16\right)±4\sqrt{1446}}{2\times 40}
Take the square root of 23136.
x=\frac{16±4\sqrt{1446}}{2\times 40}
The opposite of -16 is 16.
x=\frac{16±4\sqrt{1446}}{80}
Multiply 2 times 40.
x=\frac{4\sqrt{1446}+16}{80}
Now solve the equation x=\frac{16±4\sqrt{1446}}{80} when ± is plus. Add 16 to 4\sqrt{1446}.
x=\frac{\sqrt{1446}}{20}+\frac{1}{5}
Divide 16+4\sqrt{1446} by 80.
x=\frac{16-4\sqrt{1446}}{80}
Now solve the equation x=\frac{16±4\sqrt{1446}}{80} when ± is minus. Subtract 4\sqrt{1446} from 16.
x=-\frac{\sqrt{1446}}{20}+\frac{1}{5}
Divide 16-4\sqrt{1446} by 80.
x=\frac{\sqrt{1446}}{20}+\frac{1}{5} x=-\frac{\sqrt{1446}}{20}+\frac{1}{5}
The equation is now solved.
5\left(4x+1\right)\left(2x-1\right)-6\left(x-7\right)=180
Multiply both sides of the equation by 30, the least common multiple of 3,2,5.
\left(20x+5\right)\left(2x-1\right)-6\left(x-7\right)=180
Use the distributive property to multiply 5 by 4x+1.
40x^{2}-20x+10x-5-6\left(x-7\right)=180
Apply the distributive property by multiplying each term of 20x+5 by each term of 2x-1.
40x^{2}-10x-5-6\left(x-7\right)=180
Combine -20x and 10x to get -10x.
40x^{2}-10x-5-6x+42=180
Use the distributive property to multiply -6 by 1x-7.
40x^{2}-16x-5+42=180
Combine -10x and -6x to get -16x.
40x^{2}-16x+37=180
Add -5 and 42 to get 37.
40x^{2}-16x=180-37
Subtract 37 from both sides.
40x^{2}-16x=143
Subtract 37 from 180 to get 143.
\frac{40x^{2}-16x}{40}=\frac{143}{40}
Divide both sides by 40.
x^{2}+\left(-\frac{16}{40}\right)x=\frac{143}{40}
Dividing by 40 undoes the multiplication by 40.
x^{2}-\frac{2}{5}x=\frac{143}{40}
Reduce the fraction \frac{-16}{40} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{2}{5}x+\left(-\frac{1}{5}\right)^{2}=\frac{143}{40}+\left(-\frac{1}{5}\right)^{2}
Divide -\frac{2}{5}, the coefficient of the x term, by 2 to get -\frac{1}{5}. Then add the square of -\frac{1}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{143}{40}+\frac{1}{25}
Square -\frac{1}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{723}{200}
Add \frac{143}{40} to \frac{1}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{5}\right)^{2}=\frac{723}{200}
Factor x^{2}-\frac{2}{5}x+\frac{1}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{5}\right)^{2}}=\sqrt{\frac{723}{200}}
Take the square root of both sides of the equation.
x-\frac{1}{5}=\frac{\sqrt{1446}}{20} x-\frac{1}{5}=-\frac{\sqrt{1446}}{20}
Simplify.
x=\frac{\sqrt{1446}}{20}+\frac{1}{5} x=-\frac{\sqrt{1446}}{20}+\frac{1}{5}
Add \frac{1}{5} to both sides of the equation.