Solve for x
x = -\frac{15}{2} = -7\frac{1}{2} = -7.5
Graph
Share
Copied to clipboard
2\left(4x+1\right)-\left(2x+3\right)=4x-16
Multiply both sides of the equation by 4, the least common multiple of 2,4.
8x+2-\left(2x+3\right)=4x-16
Use the distributive property to multiply 2 by 4x+1.
8x+2-2x-3=4x-16
To find the opposite of 2x+3, find the opposite of each term.
6x+2-3=4x-16
Combine 8x and -2x to get 6x.
6x-1=4x-16
Subtract 3 from 2 to get -1.
6x-1-4x=-16
Subtract 4x from both sides.
2x-1=-16
Combine 6x and -4x to get 2x.
2x=-16+1
Add 1 to both sides.
2x=-15
Add -16 and 1 to get -15.
x=\frac{-15}{2}
Divide both sides by 2.
x=-\frac{15}{2}
Fraction \frac{-15}{2} can be rewritten as -\frac{15}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}