Solve for x
x=\frac{9}{10}=0.9
Graph
Share
Copied to clipboard
\frac{4x+1}{\frac{2}{3}}-\frac{1+\frac{4}{3}x}{\frac{1}{2}}=\frac{\frac{5x-2}{2}}{\frac{2}{2}-\frac{1}{2}}
Convert 1 to fraction \frac{2}{2}.
\frac{4x+1}{\frac{2}{3}}-\frac{1+\frac{4}{3}x}{\frac{1}{2}}=\frac{\frac{5x-2}{2}}{\frac{2-1}{2}}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{4x+1}{\frac{2}{3}}-\frac{1+\frac{4}{3}x}{\frac{1}{2}}=\frac{\frac{5x-2}{2}}{\frac{1}{2}}
Subtract 1 from 2 to get 1.
\frac{4x}{\frac{2}{3}}+\frac{1}{\frac{2}{3}}-\frac{1+\frac{4}{3}x}{\frac{1}{2}}=\frac{\frac{5x-2}{2}}{\frac{1}{2}}
Divide each term of 4x+1 by \frac{2}{3} to get \frac{4x}{\frac{2}{3}}+\frac{1}{\frac{2}{3}}.
6x+\frac{1}{\frac{2}{3}}-\frac{1+\frac{4}{3}x}{\frac{1}{2}}=\frac{\frac{5x-2}{2}}{\frac{1}{2}}
Divide 4x by \frac{2}{3} to get 6x.
6x+1\times \frac{3}{2}-\frac{1+\frac{4}{3}x}{\frac{1}{2}}=\frac{\frac{5x-2}{2}}{\frac{1}{2}}
Divide 1 by \frac{2}{3} by multiplying 1 by the reciprocal of \frac{2}{3}.
6x+\frac{3}{2}-\frac{1+\frac{4}{3}x}{\frac{1}{2}}=\frac{\frac{5x-2}{2}}{\frac{1}{2}}
Multiply 1 and \frac{3}{2} to get \frac{3}{2}.
6x+\frac{3}{2}-\left(\frac{1}{\frac{1}{2}}+\frac{\frac{4}{3}x}{\frac{1}{2}}\right)=\frac{\frac{5x-2}{2}}{\frac{1}{2}}
Divide each term of 1+\frac{4}{3}x by \frac{1}{2} to get \frac{1}{\frac{1}{2}}+\frac{\frac{4}{3}x}{\frac{1}{2}}.
6x+\frac{3}{2}-\left(1\times 2+\frac{\frac{4}{3}x}{\frac{1}{2}}\right)=\frac{\frac{5x-2}{2}}{\frac{1}{2}}
Divide 1 by \frac{1}{2} by multiplying 1 by the reciprocal of \frac{1}{2}.
6x+\frac{3}{2}-\left(2+\frac{\frac{4}{3}x}{\frac{1}{2}}\right)=\frac{\frac{5x-2}{2}}{\frac{1}{2}}
Multiply 1 and 2 to get 2.
6x+\frac{3}{2}-\left(2+\frac{8}{3}x\right)=\frac{\frac{5x-2}{2}}{\frac{1}{2}}
Divide \frac{4}{3}x by \frac{1}{2} to get \frac{8}{3}x.
6x+\frac{3}{2}-2-\frac{8}{3}x=\frac{\frac{5x-2}{2}}{\frac{1}{2}}
To find the opposite of 2+\frac{8}{3}x, find the opposite of each term.
6x+\frac{3}{2}-\frac{4}{2}-\frac{8}{3}x=\frac{\frac{5x-2}{2}}{\frac{1}{2}}
Convert 2 to fraction \frac{4}{2}.
6x+\frac{3-4}{2}-\frac{8}{3}x=\frac{\frac{5x-2}{2}}{\frac{1}{2}}
Since \frac{3}{2} and \frac{4}{2} have the same denominator, subtract them by subtracting their numerators.
6x-\frac{1}{2}-\frac{8}{3}x=\frac{\frac{5x-2}{2}}{\frac{1}{2}}
Subtract 4 from 3 to get -1.
\frac{10}{3}x-\frac{1}{2}=\frac{\frac{5x-2}{2}}{\frac{1}{2}}
Combine 6x and -\frac{8}{3}x to get \frac{10}{3}x.
\frac{10}{3}x-\frac{1}{2}=\frac{\frac{5}{2}x-1}{\frac{1}{2}}
Divide each term of 5x-2 by 2 to get \frac{5}{2}x-1.
\frac{10}{3}x-\frac{1}{2}=-2+5x
Divide each term of \frac{5}{2}x-1 by \frac{1}{2} to get -2+5x.
\frac{10}{3}x-\frac{1}{2}-5x=-2
Subtract 5x from both sides.
-\frac{5}{3}x-\frac{1}{2}=-2
Combine \frac{10}{3}x and -5x to get -\frac{5}{3}x.
-\frac{5}{3}x=-2+\frac{1}{2}
Add \frac{1}{2} to both sides.
-\frac{5}{3}x=-\frac{4}{2}+\frac{1}{2}
Convert -2 to fraction -\frac{4}{2}.
-\frac{5}{3}x=\frac{-4+1}{2}
Since -\frac{4}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
-\frac{5}{3}x=-\frac{3}{2}
Add -4 and 1 to get -3.
x=-\frac{3}{2}\left(-\frac{3}{5}\right)
Multiply both sides by -\frac{3}{5}, the reciprocal of -\frac{5}{3}.
x=\frac{-3\left(-3\right)}{2\times 5}
Multiply -\frac{3}{2} times -\frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{9}{10}
Do the multiplications in the fraction \frac{-3\left(-3\right)}{2\times 5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}