Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{4w}{\left(w+2\right)\left(w+7\right)}-\frac{2w+5}{\left(w-4\right)\left(w+7\right)}
Factor w^{2}+9w+14. Factor w^{2}+3w-28.
\frac{4w\left(w-4\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}-\frac{\left(2w+5\right)\left(w+2\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(w+2\right)\left(w+7\right) and \left(w-4\right)\left(w+7\right) is \left(w-4\right)\left(w+2\right)\left(w+7\right). Multiply \frac{4w}{\left(w+2\right)\left(w+7\right)} times \frac{w-4}{w-4}. Multiply \frac{2w+5}{\left(w-4\right)\left(w+7\right)} times \frac{w+2}{w+2}.
\frac{4w\left(w-4\right)-\left(2w+5\right)\left(w+2\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Since \frac{4w\left(w-4\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)} and \frac{\left(2w+5\right)\left(w+2\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4w^{2}-16w-2w^{2}-4w-5w-10}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Do the multiplications in 4w\left(w-4\right)-\left(2w+5\right)\left(w+2\right).
\frac{2w^{2}-25w-10}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Combine like terms in 4w^{2}-16w-2w^{2}-4w-5w-10.
\frac{2w^{2}-25w-10}{w^{3}+5w^{2}-22w-56}
Expand \left(w-4\right)\left(w+2\right)\left(w+7\right).
\frac{4w}{\left(w+2\right)\left(w+7\right)}-\frac{2w+5}{\left(w-4\right)\left(w+7\right)}
Factor w^{2}+9w+14. Factor w^{2}+3w-28.
\frac{4w\left(w-4\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}-\frac{\left(2w+5\right)\left(w+2\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(w+2\right)\left(w+7\right) and \left(w-4\right)\left(w+7\right) is \left(w-4\right)\left(w+2\right)\left(w+7\right). Multiply \frac{4w}{\left(w+2\right)\left(w+7\right)} times \frac{w-4}{w-4}. Multiply \frac{2w+5}{\left(w-4\right)\left(w+7\right)} times \frac{w+2}{w+2}.
\frac{4w\left(w-4\right)-\left(2w+5\right)\left(w+2\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Since \frac{4w\left(w-4\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)} and \frac{\left(2w+5\right)\left(w+2\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4w^{2}-16w-2w^{2}-4w-5w-10}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Do the multiplications in 4w\left(w-4\right)-\left(2w+5\right)\left(w+2\right).
\frac{2w^{2}-25w-10}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Combine like terms in 4w^{2}-16w-2w^{2}-4w-5w-10.
\frac{2w^{2}-25w-10}{w^{3}+5w^{2}-22w-56}
Expand \left(w-4\right)\left(w+2\right)\left(w+7\right).