Evaluate
\frac{2w^{2}-25w-10}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Expand
\frac{2w^{2}-25w-10}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Share
Copied to clipboard
\frac{4w}{\left(w+2\right)\left(w+7\right)}-\frac{2w+5}{\left(w-4\right)\left(w+7\right)}
Factor w^{2}+9w+14. Factor w^{2}+3w-28.
\frac{4w\left(w-4\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}-\frac{\left(2w+5\right)\left(w+2\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(w+2\right)\left(w+7\right) and \left(w-4\right)\left(w+7\right) is \left(w-4\right)\left(w+2\right)\left(w+7\right). Multiply \frac{4w}{\left(w+2\right)\left(w+7\right)} times \frac{w-4}{w-4}. Multiply \frac{2w+5}{\left(w-4\right)\left(w+7\right)} times \frac{w+2}{w+2}.
\frac{4w\left(w-4\right)-\left(2w+5\right)\left(w+2\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Since \frac{4w\left(w-4\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)} and \frac{\left(2w+5\right)\left(w+2\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4w^{2}-16w-2w^{2}-4w-5w-10}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Do the multiplications in 4w\left(w-4\right)-\left(2w+5\right)\left(w+2\right).
\frac{2w^{2}-25w-10}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Combine like terms in 4w^{2}-16w-2w^{2}-4w-5w-10.
\frac{2w^{2}-25w-10}{w^{3}+5w^{2}-22w-56}
Expand \left(w-4\right)\left(w+2\right)\left(w+7\right).
\frac{4w}{\left(w+2\right)\left(w+7\right)}-\frac{2w+5}{\left(w-4\right)\left(w+7\right)}
Factor w^{2}+9w+14. Factor w^{2}+3w-28.
\frac{4w\left(w-4\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}-\frac{\left(2w+5\right)\left(w+2\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(w+2\right)\left(w+7\right) and \left(w-4\right)\left(w+7\right) is \left(w-4\right)\left(w+2\right)\left(w+7\right). Multiply \frac{4w}{\left(w+2\right)\left(w+7\right)} times \frac{w-4}{w-4}. Multiply \frac{2w+5}{\left(w-4\right)\left(w+7\right)} times \frac{w+2}{w+2}.
\frac{4w\left(w-4\right)-\left(2w+5\right)\left(w+2\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Since \frac{4w\left(w-4\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)} and \frac{\left(2w+5\right)\left(w+2\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4w^{2}-16w-2w^{2}-4w-5w-10}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Do the multiplications in 4w\left(w-4\right)-\left(2w+5\right)\left(w+2\right).
\frac{2w^{2}-25w-10}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Combine like terms in 4w^{2}-16w-2w^{2}-4w-5w-10.
\frac{2w^{2}-25w-10}{w^{3}+5w^{2}-22w-56}
Expand \left(w-4\right)\left(w+2\right)\left(w+7\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}