Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{4v}{\left(v-7\right)\left(v-3\right)}-\frac{3v}{\left(v-7\right)\left(v-4\right)}
Factor v^{2}-10v+21. Factor v^{2}-11v+28.
\frac{4v\left(v-4\right)}{\left(v-7\right)\left(v-4\right)\left(v-3\right)}-\frac{3v\left(v-3\right)}{\left(v-7\right)\left(v-4\right)\left(v-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(v-7\right)\left(v-3\right) and \left(v-7\right)\left(v-4\right) is \left(v-7\right)\left(v-4\right)\left(v-3\right). Multiply \frac{4v}{\left(v-7\right)\left(v-3\right)} times \frac{v-4}{v-4}. Multiply \frac{3v}{\left(v-7\right)\left(v-4\right)} times \frac{v-3}{v-3}.
\frac{4v\left(v-4\right)-3v\left(v-3\right)}{\left(v-7\right)\left(v-4\right)\left(v-3\right)}
Since \frac{4v\left(v-4\right)}{\left(v-7\right)\left(v-4\right)\left(v-3\right)} and \frac{3v\left(v-3\right)}{\left(v-7\right)\left(v-4\right)\left(v-3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4v^{2}-16v-3v^{2}+9v}{\left(v-7\right)\left(v-4\right)\left(v-3\right)}
Do the multiplications in 4v\left(v-4\right)-3v\left(v-3\right).
\frac{v^{2}-7v}{\left(v-7\right)\left(v-4\right)\left(v-3\right)}
Combine like terms in 4v^{2}-16v-3v^{2}+9v.
\frac{v\left(v-7\right)}{\left(v-7\right)\left(v-4\right)\left(v-3\right)}
Factor the expressions that are not already factored in \frac{v^{2}-7v}{\left(v-7\right)\left(v-4\right)\left(v-3\right)}.
\frac{v}{\left(v-4\right)\left(v-3\right)}
Cancel out v-7 in both numerator and denominator.
\frac{v}{v^{2}-7v+12}
Expand \left(v-4\right)\left(v-3\right).