Evaluate
-\frac{1}{q-p}
Expand
-\frac{1}{q-p}
Share
Copied to clipboard
\frac{4p\left(-p+q\right)^{2}}{\left(-p+q\right)^{2}\left(2p-2q\right)^{2}}-\frac{q\left(2p-2q\right)^{2}}{\left(-p+q\right)^{2}\left(2p-2q\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(2p-2q\right)^{2} and \left(q-p\right)^{2} is \left(-p+q\right)^{2}\left(2p-2q\right)^{2}. Multiply \frac{4p}{\left(2p-2q\right)^{2}} times \frac{\left(-p+q\right)^{2}}{\left(-p+q\right)^{2}}. Multiply \frac{q}{\left(q-p\right)^{2}} times \frac{\left(2p-2q\right)^{2}}{\left(2p-2q\right)^{2}}.
\frac{4p\left(-p+q\right)^{2}-q\left(2p-2q\right)^{2}}{\left(-p+q\right)^{2}\left(2p-2q\right)^{2}}
Since \frac{4p\left(-p+q\right)^{2}}{\left(-p+q\right)^{2}\left(2p-2q\right)^{2}} and \frac{q\left(2p-2q\right)^{2}}{\left(-p+q\right)^{2}\left(2p-2q\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{4p^{3}-8p^{2}q+4pq^{2}-4qp^{2}+8q^{2}p-4q^{3}}{\left(-p+q\right)^{2}\left(2p-2q\right)^{2}}
Do the multiplications in 4p\left(-p+q\right)^{2}-q\left(2p-2q\right)^{2}.
\frac{4p^{3}+12pq^{2}-12p^{2}q-4q^{3}}{\left(-p+q\right)^{2}\left(2p-2q\right)^{2}}
Combine like terms in 4p^{3}-8p^{2}q+4pq^{2}-4qp^{2}+8q^{2}p-4q^{3}.
\frac{4p^{3}+12pq^{2}-12p^{2}q-4q^{3}}{4p^{4}-16pq^{3}+4q^{4}-16qp^{3}+24\left(pq\right)^{2}}
Expand \left(-p+q\right)^{2}\left(2p-2q\right)^{2}.
\frac{4p^{3}+12pq^{2}-12p^{2}q-4q^{3}}{4p^{4}-16pq^{3}+4q^{4}-16qp^{3}+24p^{2}q^{2}}
Expand \left(pq\right)^{2}.
\frac{4\left(p-q\right)^{3}}{4\left(p-q\right)^{4}}
Factor the expressions that are not already factored.
\frac{1}{p-q}
Cancel out 4\left(p-q\right)^{3} in both numerator and denominator.
\frac{4p\left(-p+q\right)^{2}}{\left(-p+q\right)^{2}\left(2p-2q\right)^{2}}-\frac{q\left(2p-2q\right)^{2}}{\left(-p+q\right)^{2}\left(2p-2q\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(2p-2q\right)^{2} and \left(q-p\right)^{2} is \left(-p+q\right)^{2}\left(2p-2q\right)^{2}. Multiply \frac{4p}{\left(2p-2q\right)^{2}} times \frac{\left(-p+q\right)^{2}}{\left(-p+q\right)^{2}}. Multiply \frac{q}{\left(q-p\right)^{2}} times \frac{\left(2p-2q\right)^{2}}{\left(2p-2q\right)^{2}}.
\frac{4p\left(-p+q\right)^{2}-q\left(2p-2q\right)^{2}}{\left(-p+q\right)^{2}\left(2p-2q\right)^{2}}
Since \frac{4p\left(-p+q\right)^{2}}{\left(-p+q\right)^{2}\left(2p-2q\right)^{2}} and \frac{q\left(2p-2q\right)^{2}}{\left(-p+q\right)^{2}\left(2p-2q\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{4p^{3}-8p^{2}q+4pq^{2}-4qp^{2}+8q^{2}p-4q^{3}}{\left(-p+q\right)^{2}\left(2p-2q\right)^{2}}
Do the multiplications in 4p\left(-p+q\right)^{2}-q\left(2p-2q\right)^{2}.
\frac{4p^{3}+12pq^{2}-12p^{2}q-4q^{3}}{\left(-p+q\right)^{2}\left(2p-2q\right)^{2}}
Combine like terms in 4p^{3}-8p^{2}q+4pq^{2}-4qp^{2}+8q^{2}p-4q^{3}.
\frac{4p^{3}+12pq^{2}-12p^{2}q-4q^{3}}{4p^{4}-16pq^{3}+4q^{4}-16qp^{3}+24\left(pq\right)^{2}}
Expand \left(-p+q\right)^{2}\left(2p-2q\right)^{2}.
\frac{4p^{3}+12pq^{2}-12p^{2}q-4q^{3}}{4p^{4}-16pq^{3}+4q^{4}-16qp^{3}+24p^{2}q^{2}}
Expand \left(pq\right)^{2}.
\frac{4\left(p-q\right)^{3}}{4\left(p-q\right)^{4}}
Factor the expressions that are not already factored.
\frac{1}{p-q}
Cancel out 4\left(p-q\right)^{3} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}