Solve for q
q=-\frac{2\times \left(\frac{2p-1}{p+1}\right)^{2}\left(2p+1\right)}{1-p}
p\neq \frac{1}{2}\text{ and }|p|\neq 1
Share
Copied to clipboard
\left(4p-2\right)\left(4p^{2}-1\right)=\left(p^{2}-1\right)\left(pq+q\right)
Multiply both sides of the equation by 2\left(p-1\right)\left(2p-1\right)\left(p+1\right), the least common multiple of p^{2}-1,4p-2.
16p^{3}-4p-8p^{2}+2=\left(p^{2}-1\right)\left(pq+q\right)
Use the distributive property to multiply 4p-2 by 4p^{2}-1.
16p^{3}-4p-8p^{2}+2=qp^{3}+p^{2}q-pq-q
Use the distributive property to multiply p^{2}-1 by pq+q.
qp^{3}+p^{2}q-pq-q=16p^{3}-4p-8p^{2}+2
Swap sides so that all variable terms are on the left hand side.
\left(p^{3}+p^{2}-p-1\right)q=16p^{3}-4p-8p^{2}+2
Combine all terms containing q.
\left(p^{3}+p^{2}-p-1\right)q=16p^{3}-8p^{2}-4p+2
The equation is in standard form.
\frac{\left(p^{3}+p^{2}-p-1\right)q}{p^{3}+p^{2}-p-1}=\frac{2\left(2p+1\right)\left(2p-1\right)^{2}}{p^{3}+p^{2}-p-1}
Divide both sides by p^{3}+p^{2}-p-1.
q=\frac{2\left(2p+1\right)\left(2p-1\right)^{2}}{p^{3}+p^{2}-p-1}
Dividing by p^{3}+p^{2}-p-1 undoes the multiplication by p^{3}+p^{2}-p-1.
q=\frac{2\left(2p+1\right)\left(2p-1\right)^{2}}{\left(p-1\right)\left(p+1\right)^{2}}
Divide 2\left(1+2p\right)\left(-1+2p\right)^{2} by p^{3}+p^{2}-p-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}