Skip to main content
Solve for q
Tick mark Image

Similar Problems from Web Search

Share

\left(4p-2\right)\left(4p^{2}-1\right)=\left(p^{2}-1\right)\left(pq+q\right)
Multiply both sides of the equation by 2\left(p-1\right)\left(2p-1\right)\left(p+1\right), the least common multiple of p^{2}-1,4p-2.
16p^{3}-4p-8p^{2}+2=\left(p^{2}-1\right)\left(pq+q\right)
Use the distributive property to multiply 4p-2 by 4p^{2}-1.
16p^{3}-4p-8p^{2}+2=qp^{3}+p^{2}q-pq-q
Use the distributive property to multiply p^{2}-1 by pq+q.
qp^{3}+p^{2}q-pq-q=16p^{3}-4p-8p^{2}+2
Swap sides so that all variable terms are on the left hand side.
\left(p^{3}+p^{2}-p-1\right)q=16p^{3}-4p-8p^{2}+2
Combine all terms containing q.
\left(p^{3}+p^{2}-p-1\right)q=16p^{3}-8p^{2}-4p+2
The equation is in standard form.
\frac{\left(p^{3}+p^{2}-p-1\right)q}{p^{3}+p^{2}-p-1}=\frac{2\left(2p+1\right)\left(2p-1\right)^{2}}{p^{3}+p^{2}-p-1}
Divide both sides by p^{3}+p^{2}-p-1.
q=\frac{2\left(2p+1\right)\left(2p-1\right)^{2}}{p^{3}+p^{2}-p-1}
Dividing by p^{3}+p^{2}-p-1 undoes the multiplication by p^{3}+p^{2}-p-1.
q=\frac{2\left(2p+1\right)\left(2p-1\right)^{2}}{\left(p-1\right)\left(p+1\right)^{2}}
Divide 2\left(1+2p\right)\left(-1+2p\right)^{2} by p^{3}+p^{2}-p-1.