Evaluate
\frac{1}{4}=0.25
Factor
\frac{1}{2 ^ {2}} = 0.25
Share
Copied to clipboard
\left(4n^{6}\right)^{1}\times \frac{1}{16n^{6}}
Use the rules of exponents to simplify the expression.
4^{1}\left(n^{6}\right)^{1}\times \frac{1}{16}\times \frac{1}{n^{6}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
4^{1}\times \frac{1}{16}\left(n^{6}\right)^{1}\times \frac{1}{n^{6}}
Use the Commutative Property of Multiplication.
4^{1}\times \frac{1}{16}n^{6}n^{6\left(-1\right)}
To raise a power to another power, multiply the exponents.
4^{1}\times \frac{1}{16}n^{6}n^{-6}
Multiply 6 times -1.
4^{1}\times \frac{1}{16}n^{6-6}
To multiply powers of the same base, add their exponents.
4^{1}\times \frac{1}{16}n^{0}
Add the exponents 6 and -6.
4\times \frac{1}{16}n^{0}
Raise 4 to the power 1.
\frac{1}{4}n^{0}
Multiply 4 times \frac{1}{16}.
\frac{1}{4}\times 1
For any term t except 0, t^{0}=1.
\frac{1}{4}
For any term t, t\times 1=t and 1t=t.
\frac{4^{1}n^{6}}{16^{1}n^{6}}
Use the rules of exponents to simplify the expression.
\frac{4^{1}n^{6-6}}{16^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{4^{1}n^{0}}{16^{1}}
Subtract 6 from 6.
\frac{4^{1}}{16^{1}}
For any number a except 0, a^{0}=1.
\frac{1}{4}
Reduce the fraction \frac{4}{16} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}