Evaluate
\frac{16n^{7}}{15}-\frac{2n^{5}}{3}-\frac{8n^{3}}{9}+\frac{4n^{2}}{3}
Factor
\frac{2n^{2}\left(24n^{5}-15n^{3}-20n+30\right)}{45}
Share
Copied to clipboard
\frac{3\times 4n^{2}}{9}-\frac{8n^{3}}{9}+\frac{16n^{7}}{15}-\frac{2n^{5}}{3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 9 is 9. Multiply \frac{4n^{2}}{3} times \frac{3}{3}.
\frac{3\times 4n^{2}-8n^{3}}{9}+\frac{16n^{7}}{15}-\frac{2n^{5}}{3}
Since \frac{3\times 4n^{2}}{9} and \frac{8n^{3}}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{12n^{2}-8n^{3}}{9}+\frac{16n^{7}}{15}-\frac{2n^{5}}{3}
Do the multiplications in 3\times 4n^{2}-8n^{3}.
\frac{5\left(12n^{2}-8n^{3}\right)}{45}+\frac{3\times 16n^{7}}{45}-\frac{2n^{5}}{3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9 and 15 is 45. Multiply \frac{12n^{2}-8n^{3}}{9} times \frac{5}{5}. Multiply \frac{16n^{7}}{15} times \frac{3}{3}.
\frac{5\left(12n^{2}-8n^{3}\right)+3\times 16n^{7}}{45}-\frac{2n^{5}}{3}
Since \frac{5\left(12n^{2}-8n^{3}\right)}{45} and \frac{3\times 16n^{7}}{45} have the same denominator, add them by adding their numerators.
\frac{60n^{2}-40n^{3}+48n^{7}}{45}-\frac{2n^{5}}{3}
Do the multiplications in 5\left(12n^{2}-8n^{3}\right)+3\times 16n^{7}.
\frac{60n^{2}-40n^{3}+48n^{7}}{45}-\frac{15\times 2n^{5}}{45}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 45 and 3 is 45. Multiply \frac{2n^{5}}{3} times \frac{15}{15}.
\frac{60n^{2}-40n^{3}+48n^{7}-15\times 2n^{5}}{45}
Since \frac{60n^{2}-40n^{3}+48n^{7}}{45} and \frac{15\times 2n^{5}}{45} have the same denominator, subtract them by subtracting their numerators.
\frac{60n^{2}-40n^{3}+48n^{7}-30n^{5}}{45}
Do the multiplications in 60n^{2}-40n^{3}+48n^{7}-15\times 2n^{5}.
\frac{2\left(30n^{2}-20n^{3}+24n^{7}-15n^{5}\right)}{45}
Factor out \frac{2}{45}.
n^{2}\left(30-20n+24n^{5}-15n^{3}\right)
Consider 30n^{2}-20n^{3}+24n^{7}-15n^{5}. Factor out n^{2}.
\frac{2n^{2}\left(30-20n+24n^{5}-15n^{3}\right)}{45}
Rewrite the complete factored expression. Polynomial 30-20n+24n^{5}-15n^{3} is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}