Solve for n
n = -\frac{252}{11} = -22\frac{10}{11} \approx -22.909090909
Share
Copied to clipboard
5\left(4n+3\right)+243=3\left(3n+2\right)
Multiply both sides of the equation by 45, the least common multiple of 9,5,15.
20n+15+243=3\left(3n+2\right)
Use the distributive property to multiply 5 by 4n+3.
20n+258=3\left(3n+2\right)
Add 15 and 243 to get 258.
20n+258=9n+6
Use the distributive property to multiply 3 by 3n+2.
20n+258-9n=6
Subtract 9n from both sides.
11n+258=6
Combine 20n and -9n to get 11n.
11n=6-258
Subtract 258 from both sides.
11n=-252
Subtract 258 from 6 to get -252.
n=\frac{-252}{11}
Divide both sides by 11.
n=-\frac{252}{11}
Fraction \frac{-252}{11} can be rewritten as -\frac{252}{11} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}