Solve for h (complex solution)
h=2\left(p-k\right)^{-\frac{1}{2}}m^{2}
m\neq 0\text{ and }p\neq k
Solve for h
h=\frac{2m^{2}}{\sqrt{p-k}}
m\neq 0\text{ and }p>k
Solve for k
k=-\frac{4m^{4}}{h^{2}}+p
h>0\text{ and }m\neq 0
Solve for k (complex solution)
k=-\frac{4m^{4}}{h^{2}}+p
|arg(h\sqrt{\frac{m^{4}}{h^{2}}})-arg(m^{2})|<\pi \text{ and }h\neq 0\text{ and }m\neq 0
Share
Copied to clipboard
m\times 4m=2h\sqrt{p-k}
Variable h cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2hm, the least common multiple of 2h,m.
m^{2}\times 4=2h\sqrt{p-k}
Multiply m and m to get m^{2}.
2h\sqrt{p-k}=m^{2}\times 4
Swap sides so that all variable terms are on the left hand side.
2\sqrt{p-k}h=4m^{2}
The equation is in standard form.
\frac{2\sqrt{p-k}h}{2\sqrt{p-k}}=\frac{4m^{2}}{2\sqrt{p-k}}
Divide both sides by 2\sqrt{p-k}.
h=\frac{4m^{2}}{2\sqrt{p-k}}
Dividing by 2\sqrt{p-k} undoes the multiplication by 2\sqrt{p-k}.
h=2\left(p-k\right)^{-\frac{1}{2}}m^{2}
Divide 4m^{2} by 2\sqrt{p-k}.
h=2\left(p-k\right)^{-\frac{1}{2}}m^{2}\text{, }h\neq 0
Variable h cannot be equal to 0.
m\times 4m=2h\sqrt{p-k}
Variable h cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2hm, the least common multiple of 2h,m.
m^{2}\times 4=2h\sqrt{p-k}
Multiply m and m to get m^{2}.
2h\sqrt{p-k}=m^{2}\times 4
Swap sides so that all variable terms are on the left hand side.
2\sqrt{p-k}h=4m^{2}
The equation is in standard form.
\frac{2\sqrt{p-k}h}{2\sqrt{p-k}}=\frac{4m^{2}}{2\sqrt{p-k}}
Divide both sides by 2\sqrt{p-k}.
h=\frac{4m^{2}}{2\sqrt{p-k}}
Dividing by 2\sqrt{p-k} undoes the multiplication by 2\sqrt{p-k}.
h=\frac{2m^{2}}{\sqrt{p-k}}
Divide 4m^{2} by 2\sqrt{p-k}.
h=\frac{2m^{2}}{\sqrt{p-k}}\text{, }h\neq 0
Variable h cannot be equal to 0.
m\times 4m=2h\sqrt{p-k}
Multiply both sides of the equation by 2hm, the least common multiple of 2h,m.
m^{2}\times 4=2h\sqrt{p-k}
Multiply m and m to get m^{2}.
2h\sqrt{p-k}=m^{2}\times 4
Swap sides so that all variable terms are on the left hand side.
\frac{2h\sqrt{-k+p}}{2h}=\frac{4m^{2}}{2h}
Divide both sides by 2h.
\sqrt{-k+p}=\frac{4m^{2}}{2h}
Dividing by 2h undoes the multiplication by 2h.
\sqrt{-k+p}=\frac{2m^{2}}{h}
Divide 4m^{2} by 2h.
-k+p=\frac{4m^{4}}{h^{2}}
Square both sides of the equation.
-k+p-p=\frac{4m^{4}}{h^{2}}-p
Subtract p from both sides of the equation.
-k=\frac{4m^{4}}{h^{2}}-p
Subtracting p from itself leaves 0.
\frac{-k}{-1}=\frac{\frac{4m^{4}}{h^{2}}-p}{-1}
Divide both sides by -1.
k=\frac{\frac{4m^{4}}{h^{2}}-p}{-1}
Dividing by -1 undoes the multiplication by -1.
k=-\frac{4m^{4}}{h^{2}}+p
Divide -p+\frac{4m^{4}}{h^{2}} by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}