Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{4k+23}{k^{2}-15k}-\frac{k\left(k+6\right)}{k\left(k-15\right)}
Factor the expressions that are not already factored in \frac{k^{2}+6k}{k^{2}-15k}.
\frac{4k+23}{k^{2}-15k}-\frac{k+6}{k-15}
Cancel out k in both numerator and denominator.
\frac{4k+23}{k\left(k-15\right)}-\frac{k+6}{k-15}
Factor k^{2}-15k.
\frac{4k+23}{k\left(k-15\right)}-\frac{\left(k+6\right)k}{k\left(k-15\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of k\left(k-15\right) and k-15 is k\left(k-15\right). Multiply \frac{k+6}{k-15} times \frac{k}{k}.
\frac{4k+23-\left(k+6\right)k}{k\left(k-15\right)}
Since \frac{4k+23}{k\left(k-15\right)} and \frac{\left(k+6\right)k}{k\left(k-15\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4k+23-k^{2}-6k}{k\left(k-15\right)}
Do the multiplications in 4k+23-\left(k+6\right)k.
\frac{-2k+23-k^{2}}{k\left(k-15\right)}
Combine like terms in 4k+23-k^{2}-6k.
\frac{-2k+23-k^{2}}{k^{2}-15k}
Expand k\left(k-15\right).
\frac{4k+23}{k^{2}-15k}-\frac{k\left(k+6\right)}{k\left(k-15\right)}
Factor the expressions that are not already factored in \frac{k^{2}+6k}{k^{2}-15k}.
\frac{4k+23}{k^{2}-15k}-\frac{k+6}{k-15}
Cancel out k in both numerator and denominator.
\frac{4k+23}{k\left(k-15\right)}-\frac{k+6}{k-15}
Factor k^{2}-15k.
\frac{4k+23}{k\left(k-15\right)}-\frac{\left(k+6\right)k}{k\left(k-15\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of k\left(k-15\right) and k-15 is k\left(k-15\right). Multiply \frac{k+6}{k-15} times \frac{k}{k}.
\frac{4k+23-\left(k+6\right)k}{k\left(k-15\right)}
Since \frac{4k+23}{k\left(k-15\right)} and \frac{\left(k+6\right)k}{k\left(k-15\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4k+23-k^{2}-6k}{k\left(k-15\right)}
Do the multiplications in 4k+23-\left(k+6\right)k.
\frac{-2k+23-k^{2}}{k\left(k-15\right)}
Combine like terms in 4k+23-k^{2}-6k.
\frac{-2k+23-k^{2}}{k^{2}-15k}
Expand k\left(k-15\right).