Evaluate
\frac{23-2k-k^{2}}{k\left(k-15\right)}
Expand
\frac{23-2k-k^{2}}{k\left(k-15\right)}
Share
Copied to clipboard
\frac{4k+23}{k^{2}-15k}-\frac{k\left(k+6\right)}{k\left(k-15\right)}
Factor the expressions that are not already factored in \frac{k^{2}+6k}{k^{2}-15k}.
\frac{4k+23}{k^{2}-15k}-\frac{k+6}{k-15}
Cancel out k in both numerator and denominator.
\frac{4k+23}{k\left(k-15\right)}-\frac{k+6}{k-15}
Factor k^{2}-15k.
\frac{4k+23}{k\left(k-15\right)}-\frac{\left(k+6\right)k}{k\left(k-15\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of k\left(k-15\right) and k-15 is k\left(k-15\right). Multiply \frac{k+6}{k-15} times \frac{k}{k}.
\frac{4k+23-\left(k+6\right)k}{k\left(k-15\right)}
Since \frac{4k+23}{k\left(k-15\right)} and \frac{\left(k+6\right)k}{k\left(k-15\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4k+23-k^{2}-6k}{k\left(k-15\right)}
Do the multiplications in 4k+23-\left(k+6\right)k.
\frac{-2k+23-k^{2}}{k\left(k-15\right)}
Combine like terms in 4k+23-k^{2}-6k.
\frac{-2k+23-k^{2}}{k^{2}-15k}
Expand k\left(k-15\right).
\frac{4k+23}{k^{2}-15k}-\frac{k\left(k+6\right)}{k\left(k-15\right)}
Factor the expressions that are not already factored in \frac{k^{2}+6k}{k^{2}-15k}.
\frac{4k+23}{k^{2}-15k}-\frac{k+6}{k-15}
Cancel out k in both numerator and denominator.
\frac{4k+23}{k\left(k-15\right)}-\frac{k+6}{k-15}
Factor k^{2}-15k.
\frac{4k+23}{k\left(k-15\right)}-\frac{\left(k+6\right)k}{k\left(k-15\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of k\left(k-15\right) and k-15 is k\left(k-15\right). Multiply \frac{k+6}{k-15} times \frac{k}{k}.
\frac{4k+23-\left(k+6\right)k}{k\left(k-15\right)}
Since \frac{4k+23}{k\left(k-15\right)} and \frac{\left(k+6\right)k}{k\left(k-15\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4k+23-k^{2}-6k}{k\left(k-15\right)}
Do the multiplications in 4k+23-\left(k+6\right)k.
\frac{-2k+23-k^{2}}{k\left(k-15\right)}
Combine like terms in 4k+23-k^{2}-6k.
\frac{-2k+23-k^{2}}{k^{2}-15k}
Expand k\left(k-15\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}