Evaluate
\left(-\frac{120}{89}+\frac{75}{89}i\right)\sqrt{2}\approx -1.906804803+1.191753002i
Real Part
-\frac{120 \sqrt{2}}{89} = -1.9068048031996787
Share
Copied to clipboard
\frac{4i\left(6.4-4i\right)}{\left(6.4+4i\right)\left(6.4-4i\right)}\times \left(3i\right)\sqrt{2}
Multiply both numerator and denominator of \frac{4i}{6.4+4i} by the complex conjugate of the denominator, 6.4-4i.
\frac{4i\left(6.4-4i\right)}{6.4^{2}-4^{2}i^{2}}\times \left(3i\right)\sqrt{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4i\left(6.4-4i\right)}{56.96}\times \left(3i\right)\sqrt{2}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4i\times 6.4+4\left(-4\right)i^{2}}{56.96}\times \left(3i\right)\sqrt{2}
Multiply 4i times 6.4-4i.
\frac{4i\times 6.4+4\left(-4\right)\left(-1\right)}{56.96}\times \left(3i\right)\sqrt{2}
By definition, i^{2} is -1.
\frac{16+25.6i}{56.96}\times \left(3i\right)\sqrt{2}
Do the multiplications in 4i\times 6.4+4\left(-4\right)\left(-1\right). Reorder the terms.
\left(\frac{25}{89}+\frac{40}{89}i\right)\times \left(3i\right)\sqrt{2}
Divide 16+25.6i by 56.96 to get \frac{25}{89}+\frac{40}{89}i.
\left(\frac{25}{89}\times \left(3i\right)+\frac{40}{89}\times 3i^{2}\right)\sqrt{2}
Multiply \frac{25}{89}+\frac{40}{89}i times 3i.
\left(\frac{25}{89}\times \left(3i\right)+\frac{40}{89}\times 3\left(-1\right)\right)\sqrt{2}
By definition, i^{2} is -1.
\left(-\frac{120}{89}+\frac{75}{89}i\right)\sqrt{2}
Do the multiplications. Reorder the terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}