Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{4i\left(-1-4i\right)}{\left(-1+4i\right)\left(-1-4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -1-4i.
\frac{4i\left(-1-4i\right)}{\left(-1\right)^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4i\left(-1-4i\right)}{17}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4i\left(-1\right)+4\left(-4\right)i^{2}}{17}
Multiply 4i times -1-4i.
\frac{4i\left(-1\right)+4\left(-4\right)\left(-1\right)}{17}
By definition, i^{2} is -1.
\frac{16-4i}{17}
Do the multiplications in 4i\left(-1\right)+4\left(-4\right)\left(-1\right). Reorder the terms.
\frac{16}{17}-\frac{4}{17}i
Divide 16-4i by 17 to get \frac{16}{17}-\frac{4}{17}i.
Re(\frac{4i\left(-1-4i\right)}{\left(-1+4i\right)\left(-1-4i\right)})
Multiply both numerator and denominator of \frac{4i}{-1+4i} by the complex conjugate of the denominator, -1-4i.
Re(\frac{4i\left(-1-4i\right)}{\left(-1\right)^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{4i\left(-1-4i\right)}{17})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4i\left(-1\right)+4\left(-4\right)i^{2}}{17})
Multiply 4i times -1-4i.
Re(\frac{4i\left(-1\right)+4\left(-4\right)\left(-1\right)}{17})
By definition, i^{2} is -1.
Re(\frac{16-4i}{17})
Do the multiplications in 4i\left(-1\right)+4\left(-4\right)\left(-1\right). Reorder the terms.
Re(\frac{16}{17}-\frac{4}{17}i)
Divide 16-4i by 17 to get \frac{16}{17}-\frac{4}{17}i.
\frac{16}{17}
The real part of \frac{16}{17}-\frac{4}{17}i is \frac{16}{17}.