Solve for x (complex solution)
\left\{\begin{matrix}\\x=\frac{a-1}{2}\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&a=-\frac{2}{3}\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=\frac{a-1}{2}\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&a=-\frac{2}{3}\end{matrix}\right.
Solve for a
a=-\frac{2}{3}\approx -0.666666667
a=2x+1
Graph
Share
Copied to clipboard
3\left(4ax-a^{2}\right)+a=6ax-2\left(2x+1\right)
Multiply both sides of the equation by 6, the least common multiple of 2,6,3.
12xa-3a^{2}+a=6ax-2\left(2x+1\right)
Use the distributive property to multiply 3 by 4ax-a^{2}.
12xa-3a^{2}+a=6ax-4x-2
Use the distributive property to multiply -2 by 2x+1.
12xa-3a^{2}+a-6ax=-4x-2
Subtract 6ax from both sides.
6xa-3a^{2}+a=-4x-2
Combine 12xa and -6ax to get 6xa.
6xa-3a^{2}+a+4x=-2
Add 4x to both sides.
6xa+a+4x=-2+3a^{2}
Add 3a^{2} to both sides.
6xa+4x=-2+3a^{2}-a
Subtract a from both sides.
\left(6a+4\right)x=-2+3a^{2}-a
Combine all terms containing x.
\left(6a+4\right)x=3a^{2}-a-2
The equation is in standard form.
\frac{\left(6a+4\right)x}{6a+4}=\frac{\left(a-1\right)\left(3a+2\right)}{6a+4}
Divide both sides by 6a+4.
x=\frac{\left(a-1\right)\left(3a+2\right)}{6a+4}
Dividing by 6a+4 undoes the multiplication by 6a+4.
x=\frac{a-1}{2}
Divide \left(-1+a\right)\left(2+3a\right) by 6a+4.
3\left(4ax-a^{2}\right)+a=6ax-2\left(2x+1\right)
Multiply both sides of the equation by 6, the least common multiple of 2,6,3.
12xa-3a^{2}+a=6ax-2\left(2x+1\right)
Use the distributive property to multiply 3 by 4ax-a^{2}.
12xa-3a^{2}+a=6ax-4x-2
Use the distributive property to multiply -2 by 2x+1.
12xa-3a^{2}+a-6ax=-4x-2
Subtract 6ax from both sides.
6xa-3a^{2}+a=-4x-2
Combine 12xa and -6ax to get 6xa.
6xa-3a^{2}+a+4x=-2
Add 4x to both sides.
6xa+a+4x=-2+3a^{2}
Add 3a^{2} to both sides.
6xa+4x=-2+3a^{2}-a
Subtract a from both sides.
\left(6a+4\right)x=-2+3a^{2}-a
Combine all terms containing x.
\left(6a+4\right)x=3a^{2}-a-2
The equation is in standard form.
\frac{\left(6a+4\right)x}{6a+4}=\frac{\left(a-1\right)\left(3a+2\right)}{6a+4}
Divide both sides by 6a+4.
x=\frac{\left(a-1\right)\left(3a+2\right)}{6a+4}
Dividing by 6a+4 undoes the multiplication by 6a+4.
x=\frac{a-1}{2}
Divide \left(-1+a\right)\left(2+3a\right) by 6a+4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}