Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Solve for a
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(4ax-a^{2}\right)+a=6ax-2\left(2x+1\right)
Multiply both sides of the equation by 6, the least common multiple of 2,6,3.
12xa-3a^{2}+a=6ax-2\left(2x+1\right)
Use the distributive property to multiply 3 by 4ax-a^{2}.
12xa-3a^{2}+a=6ax-4x-2
Use the distributive property to multiply -2 by 2x+1.
12xa-3a^{2}+a-6ax=-4x-2
Subtract 6ax from both sides.
6xa-3a^{2}+a=-4x-2
Combine 12xa and -6ax to get 6xa.
6xa-3a^{2}+a+4x=-2
Add 4x to both sides.
6xa+a+4x=-2+3a^{2}
Add 3a^{2} to both sides.
6xa+4x=-2+3a^{2}-a
Subtract a from both sides.
\left(6a+4\right)x=-2+3a^{2}-a
Combine all terms containing x.
\left(6a+4\right)x=3a^{2}-a-2
The equation is in standard form.
\frac{\left(6a+4\right)x}{6a+4}=\frac{\left(a-1\right)\left(3a+2\right)}{6a+4}
Divide both sides by 6a+4.
x=\frac{\left(a-1\right)\left(3a+2\right)}{6a+4}
Dividing by 6a+4 undoes the multiplication by 6a+4.
x=\frac{a-1}{2}
Divide \left(-1+a\right)\left(2+3a\right) by 6a+4.
3\left(4ax-a^{2}\right)+a=6ax-2\left(2x+1\right)
Multiply both sides of the equation by 6, the least common multiple of 2,6,3.
12xa-3a^{2}+a=6ax-2\left(2x+1\right)
Use the distributive property to multiply 3 by 4ax-a^{2}.
12xa-3a^{2}+a=6ax-4x-2
Use the distributive property to multiply -2 by 2x+1.
12xa-3a^{2}+a-6ax=-4x-2
Subtract 6ax from both sides.
6xa-3a^{2}+a=-4x-2
Combine 12xa and -6ax to get 6xa.
6xa-3a^{2}+a+4x=-2
Add 4x to both sides.
6xa+a+4x=-2+3a^{2}
Add 3a^{2} to both sides.
6xa+4x=-2+3a^{2}-a
Subtract a from both sides.
\left(6a+4\right)x=-2+3a^{2}-a
Combine all terms containing x.
\left(6a+4\right)x=3a^{2}-a-2
The equation is in standard form.
\frac{\left(6a+4\right)x}{6a+4}=\frac{\left(a-1\right)\left(3a+2\right)}{6a+4}
Divide both sides by 6a+4.
x=\frac{\left(a-1\right)\left(3a+2\right)}{6a+4}
Dividing by 6a+4 undoes the multiplication by 6a+4.
x=\frac{a-1}{2}
Divide \left(-1+a\right)\left(2+3a\right) by 6a+4.