Solve for a
a = \frac{142}{9} = 15\frac{7}{9} \approx 15.777777778
Share
Copied to clipboard
\frac{4a-1}{13}-\frac{2}{1}=\frac{2a-1}{9+2}
Add 9 and 4 to get 13.
\frac{4a-1}{13}-2=\frac{2a-1}{9+2}
Anything divided by one gives itself.
\frac{4a-1}{13}-2=\frac{2a-1}{11}
Add 9 and 2 to get 11.
\frac{4}{13}a-\frac{1}{13}-2=\frac{2a-1}{11}
Divide each term of 4a-1 by 13 to get \frac{4}{13}a-\frac{1}{13}.
\frac{4}{13}a-\frac{1}{13}-\frac{26}{13}=\frac{2a-1}{11}
Convert 2 to fraction \frac{26}{13}.
\frac{4}{13}a+\frac{-1-26}{13}=\frac{2a-1}{11}
Since -\frac{1}{13} and \frac{26}{13} have the same denominator, subtract them by subtracting their numerators.
\frac{4}{13}a-\frac{27}{13}=\frac{2a-1}{11}
Subtract 26 from -1 to get -27.
\frac{4}{13}a-\frac{27}{13}=\frac{2}{11}a-\frac{1}{11}
Divide each term of 2a-1 by 11 to get \frac{2}{11}a-\frac{1}{11}.
\frac{4}{13}a-\frac{27}{13}-\frac{2}{11}a=-\frac{1}{11}
Subtract \frac{2}{11}a from both sides.
\frac{18}{143}a-\frac{27}{13}=-\frac{1}{11}
Combine \frac{4}{13}a and -\frac{2}{11}a to get \frac{18}{143}a.
\frac{18}{143}a=-\frac{1}{11}+\frac{27}{13}
Add \frac{27}{13} to both sides.
\frac{18}{143}a=-\frac{13}{143}+\frac{297}{143}
Least common multiple of 11 and 13 is 143. Convert -\frac{1}{11} and \frac{27}{13} to fractions with denominator 143.
\frac{18}{143}a=\frac{-13+297}{143}
Since -\frac{13}{143} and \frac{297}{143} have the same denominator, add them by adding their numerators.
\frac{18}{143}a=\frac{284}{143}
Add -13 and 297 to get 284.
a=\frac{284}{143}\times \frac{143}{18}
Multiply both sides by \frac{143}{18}, the reciprocal of \frac{18}{143}.
a=\frac{284\times 143}{143\times 18}
Multiply \frac{284}{143} times \frac{143}{18} by multiplying numerator times numerator and denominator times denominator.
a=\frac{284}{18}
Cancel out 143 in both numerator and denominator.
a=\frac{142}{9}
Reduce the fraction \frac{284}{18} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}