Evaluate
\frac{12a}{1-a^{3}}
Expand
-\frac{12a}{a^{3}-1}
Share
Copied to clipboard
\frac{4a^{2}-3a+5}{\left(a-1\right)\left(a^{2}+a+1\right)}-\frac{1-2a}{a^{2}+a+1}+\frac{6}{1-a}
Factor a^{3}-1.
\frac{4a^{2}-3a+5}{\left(a-1\right)\left(a^{2}+a+1\right)}-\frac{\left(1-2a\right)\left(a-1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)}+\frac{6}{1-a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)\left(a^{2}+a+1\right) and a^{2}+a+1 is \left(a-1\right)\left(a^{2}+a+1\right). Multiply \frac{1-2a}{a^{2}+a+1} times \frac{a-1}{a-1}.
\frac{4a^{2}-3a+5-\left(1-2a\right)\left(a-1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)}+\frac{6}{1-a}
Since \frac{4a^{2}-3a+5}{\left(a-1\right)\left(a^{2}+a+1\right)} and \frac{\left(1-2a\right)\left(a-1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4a^{2}-3a+5+1-a+2a^{2}-2a}{\left(a-1\right)\left(a^{2}+a+1\right)}+\frac{6}{1-a}
Do the multiplications in 4a^{2}-3a+5-\left(1-2a\right)\left(a-1\right).
\frac{6a^{2}-6a+6}{\left(a-1\right)\left(a^{2}+a+1\right)}+\frac{6}{1-a}
Combine like terms in 4a^{2}-3a+5+1-a+2a^{2}-2a.
\frac{6a^{2}-6a+6}{\left(a-1\right)\left(a^{2}+a+1\right)}+\frac{6\left(-1\right)\left(a^{2}+a+1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)\left(a^{2}+a+1\right) and 1-a is \left(a-1\right)\left(a^{2}+a+1\right). Multiply \frac{6}{1-a} times \frac{-\left(a^{2}+a+1\right)}{-\left(a^{2}+a+1\right)}.
\frac{6a^{2}-6a+6+6\left(-1\right)\left(a^{2}+a+1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)}
Since \frac{6a^{2}-6a+6}{\left(a-1\right)\left(a^{2}+a+1\right)} and \frac{6\left(-1\right)\left(a^{2}+a+1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)} have the same denominator, add them by adding their numerators.
\frac{6a^{2}-6a+6-6a^{2}-6a-6}{\left(a-1\right)\left(a^{2}+a+1\right)}
Do the multiplications in 6a^{2}-6a+6+6\left(-1\right)\left(a^{2}+a+1\right).
\frac{-12a}{\left(a-1\right)\left(a^{2}+a+1\right)}
Combine like terms in 6a^{2}-6a+6-6a^{2}-6a-6.
\frac{-12a}{a^{3}-1}
Expand \left(a-1\right)\left(a^{2}+a+1\right).
\frac{4a^{2}-3a+5}{\left(a-1\right)\left(a^{2}+a+1\right)}-\frac{1-2a}{a^{2}+a+1}+\frac{6}{1-a}
Factor a^{3}-1.
\frac{4a^{2}-3a+5}{\left(a-1\right)\left(a^{2}+a+1\right)}-\frac{\left(1-2a\right)\left(a-1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)}+\frac{6}{1-a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)\left(a^{2}+a+1\right) and a^{2}+a+1 is \left(a-1\right)\left(a^{2}+a+1\right). Multiply \frac{1-2a}{a^{2}+a+1} times \frac{a-1}{a-1}.
\frac{4a^{2}-3a+5-\left(1-2a\right)\left(a-1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)}+\frac{6}{1-a}
Since \frac{4a^{2}-3a+5}{\left(a-1\right)\left(a^{2}+a+1\right)} and \frac{\left(1-2a\right)\left(a-1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4a^{2}-3a+5+1-a+2a^{2}-2a}{\left(a-1\right)\left(a^{2}+a+1\right)}+\frac{6}{1-a}
Do the multiplications in 4a^{2}-3a+5-\left(1-2a\right)\left(a-1\right).
\frac{6a^{2}-6a+6}{\left(a-1\right)\left(a^{2}+a+1\right)}+\frac{6}{1-a}
Combine like terms in 4a^{2}-3a+5+1-a+2a^{2}-2a.
\frac{6a^{2}-6a+6}{\left(a-1\right)\left(a^{2}+a+1\right)}+\frac{6\left(-1\right)\left(a^{2}+a+1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)\left(a^{2}+a+1\right) and 1-a is \left(a-1\right)\left(a^{2}+a+1\right). Multiply \frac{6}{1-a} times \frac{-\left(a^{2}+a+1\right)}{-\left(a^{2}+a+1\right)}.
\frac{6a^{2}-6a+6+6\left(-1\right)\left(a^{2}+a+1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)}
Since \frac{6a^{2}-6a+6}{\left(a-1\right)\left(a^{2}+a+1\right)} and \frac{6\left(-1\right)\left(a^{2}+a+1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)} have the same denominator, add them by adding their numerators.
\frac{6a^{2}-6a+6-6a^{2}-6a-6}{\left(a-1\right)\left(a^{2}+a+1\right)}
Do the multiplications in 6a^{2}-6a+6+6\left(-1\right)\left(a^{2}+a+1\right).
\frac{-12a}{\left(a-1\right)\left(a^{2}+a+1\right)}
Combine like terms in 6a^{2}-6a+6-6a^{2}-6a-6.
\frac{-12a}{a^{3}-1}
Expand \left(a-1\right)\left(a^{2}+a+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}