Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{4a^{2}-3a+5}{\left(a-1\right)\left(a^{2}+a+1\right)}-\frac{1-2a}{a^{2}+a+1}+\frac{6}{1-a}
Factor a^{3}-1.
\frac{4a^{2}-3a+5}{\left(a-1\right)\left(a^{2}+a+1\right)}-\frac{\left(1-2a\right)\left(a-1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)}+\frac{6}{1-a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)\left(a^{2}+a+1\right) and a^{2}+a+1 is \left(a-1\right)\left(a^{2}+a+1\right). Multiply \frac{1-2a}{a^{2}+a+1} times \frac{a-1}{a-1}.
\frac{4a^{2}-3a+5-\left(1-2a\right)\left(a-1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)}+\frac{6}{1-a}
Since \frac{4a^{2}-3a+5}{\left(a-1\right)\left(a^{2}+a+1\right)} and \frac{\left(1-2a\right)\left(a-1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4a^{2}-3a+5+1-a+2a^{2}-2a}{\left(a-1\right)\left(a^{2}+a+1\right)}+\frac{6}{1-a}
Do the multiplications in 4a^{2}-3a+5-\left(1-2a\right)\left(a-1\right).
\frac{6a^{2}-6a+6}{\left(a-1\right)\left(a^{2}+a+1\right)}+\frac{6}{1-a}
Combine like terms in 4a^{2}-3a+5+1-a+2a^{2}-2a.
\frac{6a^{2}-6a+6}{\left(a-1\right)\left(a^{2}+a+1\right)}+\frac{6\left(-1\right)\left(a^{2}+a+1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)\left(a^{2}+a+1\right) and 1-a is \left(a-1\right)\left(a^{2}+a+1\right). Multiply \frac{6}{1-a} times \frac{-\left(a^{2}+a+1\right)}{-\left(a^{2}+a+1\right)}.
\frac{6a^{2}-6a+6+6\left(-1\right)\left(a^{2}+a+1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)}
Since \frac{6a^{2}-6a+6}{\left(a-1\right)\left(a^{2}+a+1\right)} and \frac{6\left(-1\right)\left(a^{2}+a+1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)} have the same denominator, add them by adding their numerators.
\frac{6a^{2}-6a+6-6a^{2}-6a-6}{\left(a-1\right)\left(a^{2}+a+1\right)}
Do the multiplications in 6a^{2}-6a+6+6\left(-1\right)\left(a^{2}+a+1\right).
\frac{-12a}{\left(a-1\right)\left(a^{2}+a+1\right)}
Combine like terms in 6a^{2}-6a+6-6a^{2}-6a-6.
\frac{-12a}{a^{3}-1}
Expand \left(a-1\right)\left(a^{2}+a+1\right).
\frac{4a^{2}-3a+5}{\left(a-1\right)\left(a^{2}+a+1\right)}-\frac{1-2a}{a^{2}+a+1}+\frac{6}{1-a}
Factor a^{3}-1.
\frac{4a^{2}-3a+5}{\left(a-1\right)\left(a^{2}+a+1\right)}-\frac{\left(1-2a\right)\left(a-1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)}+\frac{6}{1-a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)\left(a^{2}+a+1\right) and a^{2}+a+1 is \left(a-1\right)\left(a^{2}+a+1\right). Multiply \frac{1-2a}{a^{2}+a+1} times \frac{a-1}{a-1}.
\frac{4a^{2}-3a+5-\left(1-2a\right)\left(a-1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)}+\frac{6}{1-a}
Since \frac{4a^{2}-3a+5}{\left(a-1\right)\left(a^{2}+a+1\right)} and \frac{\left(1-2a\right)\left(a-1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4a^{2}-3a+5+1-a+2a^{2}-2a}{\left(a-1\right)\left(a^{2}+a+1\right)}+\frac{6}{1-a}
Do the multiplications in 4a^{2}-3a+5-\left(1-2a\right)\left(a-1\right).
\frac{6a^{2}-6a+6}{\left(a-1\right)\left(a^{2}+a+1\right)}+\frac{6}{1-a}
Combine like terms in 4a^{2}-3a+5+1-a+2a^{2}-2a.
\frac{6a^{2}-6a+6}{\left(a-1\right)\left(a^{2}+a+1\right)}+\frac{6\left(-1\right)\left(a^{2}+a+1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)\left(a^{2}+a+1\right) and 1-a is \left(a-1\right)\left(a^{2}+a+1\right). Multiply \frac{6}{1-a} times \frac{-\left(a^{2}+a+1\right)}{-\left(a^{2}+a+1\right)}.
\frac{6a^{2}-6a+6+6\left(-1\right)\left(a^{2}+a+1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)}
Since \frac{6a^{2}-6a+6}{\left(a-1\right)\left(a^{2}+a+1\right)} and \frac{6\left(-1\right)\left(a^{2}+a+1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)} have the same denominator, add them by adding their numerators.
\frac{6a^{2}-6a+6-6a^{2}-6a-6}{\left(a-1\right)\left(a^{2}+a+1\right)}
Do the multiplications in 6a^{2}-6a+6+6\left(-1\right)\left(a^{2}+a+1\right).
\frac{-12a}{\left(a-1\right)\left(a^{2}+a+1\right)}
Combine like terms in 6a^{2}-6a+6-6a^{2}-6a-6.
\frac{-12a}{a^{3}-1}
Expand \left(a-1\right)\left(a^{2}+a+1\right).