Evaluate
\frac{a^{2}}{12}
Differentiate w.r.t. a
\frac{a}{6}
Share
Copied to clipboard
\frac{4a^{2}}{3}\times \frac{1}{16}
Cancel out a in both numerator and denominator.
\frac{4a^{2}}{3\times 16}
Multiply \frac{4a^{2}}{3} times \frac{1}{16} by multiplying numerator times numerator and denominator times denominator.
\frac{a^{2}}{3\times 4}
Cancel out 4 in both numerator and denominator.
\frac{a^{2}}{12}
Multiply 3 and 4 to get 12.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{4a^{2}}{3}\times \frac{1}{16})
Cancel out a in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{4a^{2}}{3\times 16})
Multiply \frac{4a^{2}}{3} times \frac{1}{16} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}}{3\times 4})
Cancel out 4 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}}{12})
Multiply 3 and 4 to get 12.
2\times \frac{1}{12}a^{2-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{1}{6}a^{2-1}
Multiply 2 times \frac{1}{12}.
\frac{1}{6}a^{1}
Subtract 1 from 2.
\frac{1}{6}a
For any term t, t^{1}=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}