Solve for a
a=\frac{\sqrt{1620273}-1257}{16}\approx 0.993715384
a=\frac{-\sqrt{1620273}-1257}{16}\approx -158.118715384
Share
Copied to clipboard
4a^{2}=628.5\left(-a+1\right)
Variable a cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by -a+1.
4a^{2}=-628.5a+628.5
Use the distributive property to multiply 628.5 by -a+1.
4a^{2}+628.5a=628.5
Add 628.5a to both sides.
4a^{2}+628.5a-628.5=0
Subtract 628.5 from both sides.
a=\frac{-628.5±\sqrt{628.5^{2}-4\times 4\left(-628.5\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 628.5 for b, and -628.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-628.5±\sqrt{395012.25-4\times 4\left(-628.5\right)}}{2\times 4}
Square 628.5 by squaring both the numerator and the denominator of the fraction.
a=\frac{-628.5±\sqrt{395012.25-16\left(-628.5\right)}}{2\times 4}
Multiply -4 times 4.
a=\frac{-628.5±\sqrt{395012.25+10056}}{2\times 4}
Multiply -16 times -628.5.
a=\frac{-628.5±\sqrt{405068.25}}{2\times 4}
Add 395012.25 to 10056.
a=\frac{-628.5±\frac{\sqrt{1620273}}{2}}{2\times 4}
Take the square root of 405068.25.
a=\frac{-628.5±\frac{\sqrt{1620273}}{2}}{8}
Multiply 2 times 4.
a=\frac{\sqrt{1620273}-1257}{2\times 8}
Now solve the equation a=\frac{-628.5±\frac{\sqrt{1620273}}{2}}{8} when ± is plus. Add -628.5 to \frac{\sqrt{1620273}}{2}.
a=\frac{\sqrt{1620273}-1257}{16}
Divide \frac{-1257+\sqrt{1620273}}{2} by 8.
a=\frac{-\sqrt{1620273}-1257}{2\times 8}
Now solve the equation a=\frac{-628.5±\frac{\sqrt{1620273}}{2}}{8} when ± is minus. Subtract \frac{\sqrt{1620273}}{2} from -628.5.
a=\frac{-\sqrt{1620273}-1257}{16}
Divide \frac{-1257-\sqrt{1620273}}{2} by 8.
a=\frac{\sqrt{1620273}-1257}{16} a=\frac{-\sqrt{1620273}-1257}{16}
The equation is now solved.
4a^{2}=628.5\left(-a+1\right)
Variable a cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by -a+1.
4a^{2}=-628.5a+628.5
Use the distributive property to multiply 628.5 by -a+1.
4a^{2}+628.5a=628.5
Add 628.5a to both sides.
\frac{4a^{2}+628.5a}{4}=\frac{628.5}{4}
Divide both sides by 4.
a^{2}+\frac{628.5}{4}a=\frac{628.5}{4}
Dividing by 4 undoes the multiplication by 4.
a^{2}+157.125a=\frac{628.5}{4}
Divide 628.5 by 4.
a^{2}+157.125a=157.125
Divide 628.5 by 4.
a^{2}+157.125a+78.5625^{2}=157.125+78.5625^{2}
Divide 157.125, the coefficient of the x term, by 2 to get 78.5625. Then add the square of 78.5625 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+157.125a+6172.06640625=157.125+6172.06640625
Square 78.5625 by squaring both the numerator and the denominator of the fraction.
a^{2}+157.125a+6172.06640625=6329.19140625
Add 157.125 to 6172.06640625 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a+78.5625\right)^{2}=6329.19140625
Factor a^{2}+157.125a+6172.06640625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+78.5625\right)^{2}}=\sqrt{6329.19140625}
Take the square root of both sides of the equation.
a+78.5625=\frac{\sqrt{1620273}}{16} a+78.5625=-\frac{\sqrt{1620273}}{16}
Simplify.
a=\frac{\sqrt{1620273}-1257}{16} a=\frac{-\sqrt{1620273}-1257}{16}
Subtract 78.5625 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}