Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4a^{2}+4a+1\right)\left(3a^{2}+14a-24\right)}{\left(a+6\right)^{2}\left(6a^{2}-5a-4\right)}
Divide \frac{4a^{2}+4a+1}{\left(a+6\right)^{2}} by \frac{6a^{2}-5a-4}{3a^{2}+14a-24} by multiplying \frac{4a^{2}+4a+1}{\left(a+6\right)^{2}} by the reciprocal of \frac{6a^{2}-5a-4}{3a^{2}+14a-24}.
\frac{\left(3a-4\right)\left(a+6\right)\left(2a+1\right)^{2}}{\left(3a-4\right)\left(2a+1\right)\left(a+6\right)^{2}}
Factor the expressions that are not already factored.
\frac{2a+1}{a+6}
Cancel out \left(3a-4\right)\left(a+6\right)\left(2a+1\right) in both numerator and denominator.
\frac{\left(4a^{2}+4a+1\right)\left(3a^{2}+14a-24\right)}{\left(a+6\right)^{2}\left(6a^{2}-5a-4\right)}
Divide \frac{4a^{2}+4a+1}{\left(a+6\right)^{2}} by \frac{6a^{2}-5a-4}{3a^{2}+14a-24} by multiplying \frac{4a^{2}+4a+1}{\left(a+6\right)^{2}} by the reciprocal of \frac{6a^{2}-5a-4}{3a^{2}+14a-24}.
\frac{\left(3a-4\right)\left(a+6\right)\left(2a+1\right)^{2}}{\left(3a-4\right)\left(2a+1\right)\left(a+6\right)^{2}}
Factor the expressions that are not already factored.
\frac{2a+1}{a+6}
Cancel out \left(3a-4\right)\left(a+6\right)\left(2a+1\right) in both numerator and denominator.