Evaluate
\frac{2}{a^{2}}
Differentiate w.r.t. a
-\frac{4}{a^{3}}
Share
Copied to clipboard
\frac{4a^{-1}\left(a^{1}a\right)^{-1}}{a^{3}a^{-4}+\left(a^{2}\right)^{-\frac{1}{2}}}
To multiply powers of the same base, add their exponents. Add 1 and 0 to get 1.
\frac{4a^{-1}\left(a^{2}\right)^{-1}}{a^{3}a^{-4}+\left(a^{2}\right)^{-\frac{1}{2}}}
To multiply powers of the same base, add their exponents. Add 1 and 1 to get 2.
\frac{4a^{-1}a^{-2}}{a^{3}a^{-4}+\left(a^{2}\right)^{-\frac{1}{2}}}
To raise a power to another power, multiply the exponents. Multiply 2 and -1 to get -2.
\frac{4a^{-3}}{a^{3}a^{-4}+\left(a^{2}\right)^{-\frac{1}{2}}}
To multiply powers of the same base, add their exponents. Add -1 and -2 to get -3.
\frac{4a^{-3}}{a^{-1}+\left(a^{2}\right)^{-\frac{1}{2}}}
To multiply powers of the same base, add their exponents. Add 3 and -4 to get -1.
\frac{4a^{-3}}{a^{-1}+a^{-1}}
To raise a power to another power, multiply the exponents. Multiply 2 and -\frac{1}{2} to get -1.
\frac{4a^{-3}}{2a^{-1}}
Combine a^{-1} and a^{-1} to get 2a^{-1}.
\frac{2a^{-3}}{\frac{1}{a}}
Cancel out 2 in both numerator and denominator.
\frac{2}{a^{2}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}