Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{4a+4a^{2}+1}{4a-8a^{2}}+a-\frac{a\left(4a+1\right)}{4a}
Factor the expressions that are not already factored in \frac{4a^{2}+a}{4a}.
\frac{4a+4a^{2}+1}{4a-8a^{2}}+a-\frac{4a+1}{4}
Cancel out a in both numerator and denominator.
\frac{4a+4a^{2}+1}{4a\left(-2a+1\right)}+a-\frac{4a+1}{4}
Factor 4a-8a^{2}.
\frac{4a+4a^{2}+1}{4a\left(-2a+1\right)}+\frac{a\times 4a\left(-2a+1\right)}{4a\left(-2a+1\right)}-\frac{4a+1}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{4a\left(-2a+1\right)}{4a\left(-2a+1\right)}.
\frac{4a+4a^{2}+1+a\times 4a\left(-2a+1\right)}{4a\left(-2a+1\right)}-\frac{4a+1}{4}
Since \frac{4a+4a^{2}+1}{4a\left(-2a+1\right)} and \frac{a\times 4a\left(-2a+1\right)}{4a\left(-2a+1\right)} have the same denominator, add them by adding their numerators.
\frac{4a+4a^{2}+1-8a^{3}+4a^{2}}{4a\left(-2a+1\right)}-\frac{4a+1}{4}
Do the multiplications in 4a+4a^{2}+1+a\times 4a\left(-2a+1\right).
\frac{4a+8a^{2}+1-8a^{3}}{4a\left(-2a+1\right)}-\frac{4a+1}{4}
Combine like terms in 4a+4a^{2}+1-8a^{3}+4a^{2}.
\frac{4a+8a^{2}+1-8a^{3}}{4a\left(-2a+1\right)}-\frac{\left(4a+1\right)a\left(-2a+1\right)}{4a\left(-2a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4a\left(-2a+1\right) and 4 is 4a\left(-2a+1\right). Multiply \frac{4a+1}{4} times \frac{a\left(-2a+1\right)}{a\left(-2a+1\right)}.
\frac{4a+8a^{2}+1-8a^{3}-\left(4a+1\right)a\left(-2a+1\right)}{4a\left(-2a+1\right)}
Since \frac{4a+8a^{2}+1-8a^{3}}{4a\left(-2a+1\right)} and \frac{\left(4a+1\right)a\left(-2a+1\right)}{4a\left(-2a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4a+8a^{2}+1-8a^{3}+8a^{3}-4a^{2}+2a^{2}-a}{4a\left(-2a+1\right)}
Do the multiplications in 4a+8a^{2}+1-8a^{3}-\left(4a+1\right)a\left(-2a+1\right).
\frac{3a+6a^{2}+1}{4a\left(-2a+1\right)}
Combine like terms in 4a+8a^{2}+1-8a^{3}+8a^{3}-4a^{2}+2a^{2}-a.
\frac{3a+6a^{2}+1}{-8a^{2}+4a}
Expand 4a\left(-2a+1\right).
\frac{4a+4a^{2}+1}{4a-8a^{2}}+a-\frac{a\left(4a+1\right)}{4a}
Factor the expressions that are not already factored in \frac{4a^{2}+a}{4a}.
\frac{4a+4a^{2}+1}{4a-8a^{2}}+a-\frac{4a+1}{4}
Cancel out a in both numerator and denominator.
\frac{4a+4a^{2}+1}{4a\left(-2a+1\right)}+a-\frac{4a+1}{4}
Factor 4a-8a^{2}.
\frac{4a+4a^{2}+1}{4a\left(-2a+1\right)}+\frac{a\times 4a\left(-2a+1\right)}{4a\left(-2a+1\right)}-\frac{4a+1}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{4a\left(-2a+1\right)}{4a\left(-2a+1\right)}.
\frac{4a+4a^{2}+1+a\times 4a\left(-2a+1\right)}{4a\left(-2a+1\right)}-\frac{4a+1}{4}
Since \frac{4a+4a^{2}+1}{4a\left(-2a+1\right)} and \frac{a\times 4a\left(-2a+1\right)}{4a\left(-2a+1\right)} have the same denominator, add them by adding their numerators.
\frac{4a+4a^{2}+1-8a^{3}+4a^{2}}{4a\left(-2a+1\right)}-\frac{4a+1}{4}
Do the multiplications in 4a+4a^{2}+1+a\times 4a\left(-2a+1\right).
\frac{4a+8a^{2}+1-8a^{3}}{4a\left(-2a+1\right)}-\frac{4a+1}{4}
Combine like terms in 4a+4a^{2}+1-8a^{3}+4a^{2}.
\frac{4a+8a^{2}+1-8a^{3}}{4a\left(-2a+1\right)}-\frac{\left(4a+1\right)a\left(-2a+1\right)}{4a\left(-2a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4a\left(-2a+1\right) and 4 is 4a\left(-2a+1\right). Multiply \frac{4a+1}{4} times \frac{a\left(-2a+1\right)}{a\left(-2a+1\right)}.
\frac{4a+8a^{2}+1-8a^{3}-\left(4a+1\right)a\left(-2a+1\right)}{4a\left(-2a+1\right)}
Since \frac{4a+8a^{2}+1-8a^{3}}{4a\left(-2a+1\right)} and \frac{\left(4a+1\right)a\left(-2a+1\right)}{4a\left(-2a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4a+8a^{2}+1-8a^{3}+8a^{3}-4a^{2}+2a^{2}-a}{4a\left(-2a+1\right)}
Do the multiplications in 4a+8a^{2}+1-8a^{3}-\left(4a+1\right)a\left(-2a+1\right).
\frac{3a+6a^{2}+1}{4a\left(-2a+1\right)}
Combine like terms in 4a+8a^{2}+1-8a^{3}+8a^{3}-4a^{2}+2a^{2}-a.
\frac{3a+6a^{2}+1}{-8a^{2}+4a}
Expand 4a\left(-2a+1\right).