Evaluate
\frac{6a^{2}+3a+1}{4a\left(1-2a\right)}
Expand
-\frac{6a^{2}+3a+1}{4\left(2a^{2}-a\right)}
Share
Copied to clipboard
\frac{4a+4a^{2}+1}{4a-8a^{2}}+a-\frac{a\left(4a+1\right)}{4a}
Factor the expressions that are not already factored in \frac{4a^{2}+a}{4a}.
\frac{4a+4a^{2}+1}{4a-8a^{2}}+a-\frac{4a+1}{4}
Cancel out a in both numerator and denominator.
\frac{4a+4a^{2}+1}{4a\left(-2a+1\right)}+a-\frac{4a+1}{4}
Factor 4a-8a^{2}.
\frac{4a+4a^{2}+1}{4a\left(-2a+1\right)}+\frac{a\times 4a\left(-2a+1\right)}{4a\left(-2a+1\right)}-\frac{4a+1}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{4a\left(-2a+1\right)}{4a\left(-2a+1\right)}.
\frac{4a+4a^{2}+1+a\times 4a\left(-2a+1\right)}{4a\left(-2a+1\right)}-\frac{4a+1}{4}
Since \frac{4a+4a^{2}+1}{4a\left(-2a+1\right)} and \frac{a\times 4a\left(-2a+1\right)}{4a\left(-2a+1\right)} have the same denominator, add them by adding their numerators.
\frac{4a+4a^{2}+1-8a^{3}+4a^{2}}{4a\left(-2a+1\right)}-\frac{4a+1}{4}
Do the multiplications in 4a+4a^{2}+1+a\times 4a\left(-2a+1\right).
\frac{4a+8a^{2}+1-8a^{3}}{4a\left(-2a+1\right)}-\frac{4a+1}{4}
Combine like terms in 4a+4a^{2}+1-8a^{3}+4a^{2}.
\frac{4a+8a^{2}+1-8a^{3}}{4a\left(-2a+1\right)}-\frac{\left(4a+1\right)a\left(-2a+1\right)}{4a\left(-2a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4a\left(-2a+1\right) and 4 is 4a\left(-2a+1\right). Multiply \frac{4a+1}{4} times \frac{a\left(-2a+1\right)}{a\left(-2a+1\right)}.
\frac{4a+8a^{2}+1-8a^{3}-\left(4a+1\right)a\left(-2a+1\right)}{4a\left(-2a+1\right)}
Since \frac{4a+8a^{2}+1-8a^{3}}{4a\left(-2a+1\right)} and \frac{\left(4a+1\right)a\left(-2a+1\right)}{4a\left(-2a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4a+8a^{2}+1-8a^{3}+8a^{3}-4a^{2}+2a^{2}-a}{4a\left(-2a+1\right)}
Do the multiplications in 4a+8a^{2}+1-8a^{3}-\left(4a+1\right)a\left(-2a+1\right).
\frac{3a+6a^{2}+1}{4a\left(-2a+1\right)}
Combine like terms in 4a+8a^{2}+1-8a^{3}+8a^{3}-4a^{2}+2a^{2}-a.
\frac{3a+6a^{2}+1}{-8a^{2}+4a}
Expand 4a\left(-2a+1\right).
\frac{4a+4a^{2}+1}{4a-8a^{2}}+a-\frac{a\left(4a+1\right)}{4a}
Factor the expressions that are not already factored in \frac{4a^{2}+a}{4a}.
\frac{4a+4a^{2}+1}{4a-8a^{2}}+a-\frac{4a+1}{4}
Cancel out a in both numerator and denominator.
\frac{4a+4a^{2}+1}{4a\left(-2a+1\right)}+a-\frac{4a+1}{4}
Factor 4a-8a^{2}.
\frac{4a+4a^{2}+1}{4a\left(-2a+1\right)}+\frac{a\times 4a\left(-2a+1\right)}{4a\left(-2a+1\right)}-\frac{4a+1}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{4a\left(-2a+1\right)}{4a\left(-2a+1\right)}.
\frac{4a+4a^{2}+1+a\times 4a\left(-2a+1\right)}{4a\left(-2a+1\right)}-\frac{4a+1}{4}
Since \frac{4a+4a^{2}+1}{4a\left(-2a+1\right)} and \frac{a\times 4a\left(-2a+1\right)}{4a\left(-2a+1\right)} have the same denominator, add them by adding their numerators.
\frac{4a+4a^{2}+1-8a^{3}+4a^{2}}{4a\left(-2a+1\right)}-\frac{4a+1}{4}
Do the multiplications in 4a+4a^{2}+1+a\times 4a\left(-2a+1\right).
\frac{4a+8a^{2}+1-8a^{3}}{4a\left(-2a+1\right)}-\frac{4a+1}{4}
Combine like terms in 4a+4a^{2}+1-8a^{3}+4a^{2}.
\frac{4a+8a^{2}+1-8a^{3}}{4a\left(-2a+1\right)}-\frac{\left(4a+1\right)a\left(-2a+1\right)}{4a\left(-2a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4a\left(-2a+1\right) and 4 is 4a\left(-2a+1\right). Multiply \frac{4a+1}{4} times \frac{a\left(-2a+1\right)}{a\left(-2a+1\right)}.
\frac{4a+8a^{2}+1-8a^{3}-\left(4a+1\right)a\left(-2a+1\right)}{4a\left(-2a+1\right)}
Since \frac{4a+8a^{2}+1-8a^{3}}{4a\left(-2a+1\right)} and \frac{\left(4a+1\right)a\left(-2a+1\right)}{4a\left(-2a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4a+8a^{2}+1-8a^{3}+8a^{3}-4a^{2}+2a^{2}-a}{4a\left(-2a+1\right)}
Do the multiplications in 4a+8a^{2}+1-8a^{3}-\left(4a+1\right)a\left(-2a+1\right).
\frac{3a+6a^{2}+1}{4a\left(-2a+1\right)}
Combine like terms in 4a+8a^{2}+1-8a^{3}+8a^{3}-4a^{2}+2a^{2}-a.
\frac{3a+6a^{2}+1}{-8a^{2}+4a}
Expand 4a\left(-2a+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}