Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{4a+3}{3\left(2a-1\right)\left(2a+1\right)}-\frac{1}{2a-1}-\frac{a}{6a+3}
Factor 12a^{2}-3.
\frac{4a+3}{3\left(2a-1\right)\left(2a+1\right)}-\frac{3\left(2a+1\right)}{3\left(2a-1\right)\left(2a+1\right)}-\frac{a}{6a+3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(2a-1\right)\left(2a+1\right) and 2a-1 is 3\left(2a-1\right)\left(2a+1\right). Multiply \frac{1}{2a-1} times \frac{3\left(2a+1\right)}{3\left(2a+1\right)}.
\frac{4a+3-3\left(2a+1\right)}{3\left(2a-1\right)\left(2a+1\right)}-\frac{a}{6a+3}
Since \frac{4a+3}{3\left(2a-1\right)\left(2a+1\right)} and \frac{3\left(2a+1\right)}{3\left(2a-1\right)\left(2a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4a+3-6a-3}{3\left(2a-1\right)\left(2a+1\right)}-\frac{a}{6a+3}
Do the multiplications in 4a+3-3\left(2a+1\right).
\frac{-2a}{3\left(2a-1\right)\left(2a+1\right)}-\frac{a}{6a+3}
Combine like terms in 4a+3-6a-3.
\frac{-2a}{3\left(2a-1\right)\left(2a+1\right)}-\frac{a}{3\left(2a+1\right)}
Factor 6a+3.
\frac{-2a}{3\left(2a-1\right)\left(2a+1\right)}-\frac{a\left(2a-1\right)}{3\left(2a-1\right)\left(2a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(2a-1\right)\left(2a+1\right) and 3\left(2a+1\right) is 3\left(2a-1\right)\left(2a+1\right). Multiply \frac{a}{3\left(2a+1\right)} times \frac{2a-1}{2a-1}.
\frac{-2a-a\left(2a-1\right)}{3\left(2a-1\right)\left(2a+1\right)}
Since \frac{-2a}{3\left(2a-1\right)\left(2a+1\right)} and \frac{a\left(2a-1\right)}{3\left(2a-1\right)\left(2a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2a-2a^{2}+a}{3\left(2a-1\right)\left(2a+1\right)}
Do the multiplications in -2a-a\left(2a-1\right).
\frac{-a-2a^{2}}{3\left(2a-1\right)\left(2a+1\right)}
Combine like terms in -2a-2a^{2}+a.
\frac{a\left(-2a-1\right)}{3\left(2a-1\right)\left(2a+1\right)}
Factor the expressions that are not already factored in \frac{-a-2a^{2}}{3\left(2a-1\right)\left(2a+1\right)}.
\frac{-a\left(2a+1\right)}{3\left(2a-1\right)\left(2a+1\right)}
Extract the negative sign in -1-2a.
\frac{-a}{3\left(2a-1\right)}
Cancel out 2a+1 in both numerator and denominator.
\frac{-a}{6a-3}
Expand 3\left(2a-1\right).
\frac{4a+3}{3\left(2a-1\right)\left(2a+1\right)}-\frac{1}{2a-1}-\frac{a}{6a+3}
Factor 12a^{2}-3.
\frac{4a+3}{3\left(2a-1\right)\left(2a+1\right)}-\frac{3\left(2a+1\right)}{3\left(2a-1\right)\left(2a+1\right)}-\frac{a}{6a+3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(2a-1\right)\left(2a+1\right) and 2a-1 is 3\left(2a-1\right)\left(2a+1\right). Multiply \frac{1}{2a-1} times \frac{3\left(2a+1\right)}{3\left(2a+1\right)}.
\frac{4a+3-3\left(2a+1\right)}{3\left(2a-1\right)\left(2a+1\right)}-\frac{a}{6a+3}
Since \frac{4a+3}{3\left(2a-1\right)\left(2a+1\right)} and \frac{3\left(2a+1\right)}{3\left(2a-1\right)\left(2a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4a+3-6a-3}{3\left(2a-1\right)\left(2a+1\right)}-\frac{a}{6a+3}
Do the multiplications in 4a+3-3\left(2a+1\right).
\frac{-2a}{3\left(2a-1\right)\left(2a+1\right)}-\frac{a}{6a+3}
Combine like terms in 4a+3-6a-3.
\frac{-2a}{3\left(2a-1\right)\left(2a+1\right)}-\frac{a}{3\left(2a+1\right)}
Factor 6a+3.
\frac{-2a}{3\left(2a-1\right)\left(2a+1\right)}-\frac{a\left(2a-1\right)}{3\left(2a-1\right)\left(2a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(2a-1\right)\left(2a+1\right) and 3\left(2a+1\right) is 3\left(2a-1\right)\left(2a+1\right). Multiply \frac{a}{3\left(2a+1\right)} times \frac{2a-1}{2a-1}.
\frac{-2a-a\left(2a-1\right)}{3\left(2a-1\right)\left(2a+1\right)}
Since \frac{-2a}{3\left(2a-1\right)\left(2a+1\right)} and \frac{a\left(2a-1\right)}{3\left(2a-1\right)\left(2a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2a-2a^{2}+a}{3\left(2a-1\right)\left(2a+1\right)}
Do the multiplications in -2a-a\left(2a-1\right).
\frac{-a-2a^{2}}{3\left(2a-1\right)\left(2a+1\right)}
Combine like terms in -2a-2a^{2}+a.
\frac{a\left(-2a-1\right)}{3\left(2a-1\right)\left(2a+1\right)}
Factor the expressions that are not already factored in \frac{-a-2a^{2}}{3\left(2a-1\right)\left(2a+1\right)}.
\frac{-a\left(2a+1\right)}{3\left(2a-1\right)\left(2a+1\right)}
Extract the negative sign in -1-2a.
\frac{-a}{3\left(2a-1\right)}
Cancel out 2a+1 in both numerator and denominator.
\frac{-a}{6a-3}
Expand 3\left(2a-1\right).