Evaluate
-\frac{a}{3\left(2a-1\right)}
Expand
-\frac{a}{3\left(2a-1\right)}
Share
Copied to clipboard
\frac{4a+3}{3\left(2a-1\right)\left(2a+1\right)}-\frac{1}{2a-1}-\frac{a}{6a+3}
Factor 12a^{2}-3.
\frac{4a+3}{3\left(2a-1\right)\left(2a+1\right)}-\frac{3\left(2a+1\right)}{3\left(2a-1\right)\left(2a+1\right)}-\frac{a}{6a+3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(2a-1\right)\left(2a+1\right) and 2a-1 is 3\left(2a-1\right)\left(2a+1\right). Multiply \frac{1}{2a-1} times \frac{3\left(2a+1\right)}{3\left(2a+1\right)}.
\frac{4a+3-3\left(2a+1\right)}{3\left(2a-1\right)\left(2a+1\right)}-\frac{a}{6a+3}
Since \frac{4a+3}{3\left(2a-1\right)\left(2a+1\right)} and \frac{3\left(2a+1\right)}{3\left(2a-1\right)\left(2a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4a+3-6a-3}{3\left(2a-1\right)\left(2a+1\right)}-\frac{a}{6a+3}
Do the multiplications in 4a+3-3\left(2a+1\right).
\frac{-2a}{3\left(2a-1\right)\left(2a+1\right)}-\frac{a}{6a+3}
Combine like terms in 4a+3-6a-3.
\frac{-2a}{3\left(2a-1\right)\left(2a+1\right)}-\frac{a}{3\left(2a+1\right)}
Factor 6a+3.
\frac{-2a}{3\left(2a-1\right)\left(2a+1\right)}-\frac{a\left(2a-1\right)}{3\left(2a-1\right)\left(2a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(2a-1\right)\left(2a+1\right) and 3\left(2a+1\right) is 3\left(2a-1\right)\left(2a+1\right). Multiply \frac{a}{3\left(2a+1\right)} times \frac{2a-1}{2a-1}.
\frac{-2a-a\left(2a-1\right)}{3\left(2a-1\right)\left(2a+1\right)}
Since \frac{-2a}{3\left(2a-1\right)\left(2a+1\right)} and \frac{a\left(2a-1\right)}{3\left(2a-1\right)\left(2a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2a-2a^{2}+a}{3\left(2a-1\right)\left(2a+1\right)}
Do the multiplications in -2a-a\left(2a-1\right).
\frac{-a-2a^{2}}{3\left(2a-1\right)\left(2a+1\right)}
Combine like terms in -2a-2a^{2}+a.
\frac{a\left(-2a-1\right)}{3\left(2a-1\right)\left(2a+1\right)}
Factor the expressions that are not already factored in \frac{-a-2a^{2}}{3\left(2a-1\right)\left(2a+1\right)}.
\frac{-a\left(2a+1\right)}{3\left(2a-1\right)\left(2a+1\right)}
Extract the negative sign in -1-2a.
\frac{-a}{3\left(2a-1\right)}
Cancel out 2a+1 in both numerator and denominator.
\frac{-a}{6a-3}
Expand 3\left(2a-1\right).
\frac{4a+3}{3\left(2a-1\right)\left(2a+1\right)}-\frac{1}{2a-1}-\frac{a}{6a+3}
Factor 12a^{2}-3.
\frac{4a+3}{3\left(2a-1\right)\left(2a+1\right)}-\frac{3\left(2a+1\right)}{3\left(2a-1\right)\left(2a+1\right)}-\frac{a}{6a+3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(2a-1\right)\left(2a+1\right) and 2a-1 is 3\left(2a-1\right)\left(2a+1\right). Multiply \frac{1}{2a-1} times \frac{3\left(2a+1\right)}{3\left(2a+1\right)}.
\frac{4a+3-3\left(2a+1\right)}{3\left(2a-1\right)\left(2a+1\right)}-\frac{a}{6a+3}
Since \frac{4a+3}{3\left(2a-1\right)\left(2a+1\right)} and \frac{3\left(2a+1\right)}{3\left(2a-1\right)\left(2a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4a+3-6a-3}{3\left(2a-1\right)\left(2a+1\right)}-\frac{a}{6a+3}
Do the multiplications in 4a+3-3\left(2a+1\right).
\frac{-2a}{3\left(2a-1\right)\left(2a+1\right)}-\frac{a}{6a+3}
Combine like terms in 4a+3-6a-3.
\frac{-2a}{3\left(2a-1\right)\left(2a+1\right)}-\frac{a}{3\left(2a+1\right)}
Factor 6a+3.
\frac{-2a}{3\left(2a-1\right)\left(2a+1\right)}-\frac{a\left(2a-1\right)}{3\left(2a-1\right)\left(2a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(2a-1\right)\left(2a+1\right) and 3\left(2a+1\right) is 3\left(2a-1\right)\left(2a+1\right). Multiply \frac{a}{3\left(2a+1\right)} times \frac{2a-1}{2a-1}.
\frac{-2a-a\left(2a-1\right)}{3\left(2a-1\right)\left(2a+1\right)}
Since \frac{-2a}{3\left(2a-1\right)\left(2a+1\right)} and \frac{a\left(2a-1\right)}{3\left(2a-1\right)\left(2a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2a-2a^{2}+a}{3\left(2a-1\right)\left(2a+1\right)}
Do the multiplications in -2a-a\left(2a-1\right).
\frac{-a-2a^{2}}{3\left(2a-1\right)\left(2a+1\right)}
Combine like terms in -2a-2a^{2}+a.
\frac{a\left(-2a-1\right)}{3\left(2a-1\right)\left(2a+1\right)}
Factor the expressions that are not already factored in \frac{-a-2a^{2}}{3\left(2a-1\right)\left(2a+1\right)}.
\frac{-a\left(2a+1\right)}{3\left(2a-1\right)\left(2a+1\right)}
Extract the negative sign in -1-2a.
\frac{-a}{3\left(2a-1\right)}
Cancel out 2a+1 in both numerator and denominator.
\frac{-a}{6a-3}
Expand 3\left(2a-1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}