Solve for x
x=\frac{21-3z}{5}
Solve for z
z=-\frac{5x}{3}+7
Share
Copied to clipboard
3\left(4-z\right)-\left(x-3\right)=2\left(2x-3\right)
Multiply both sides of the equation by 6, the least common multiple of 2,6,3.
12-3z-\left(x-3\right)=2\left(2x-3\right)
Use the distributive property to multiply 3 by 4-z.
12-3z-x+3=2\left(2x-3\right)
To find the opposite of x-3, find the opposite of each term.
15-3z-x=2\left(2x-3\right)
Add 12 and 3 to get 15.
15-3z-x=4x-6
Use the distributive property to multiply 2 by 2x-3.
15-3z-x-4x=-6
Subtract 4x from both sides.
15-3z-5x=-6
Combine -x and -4x to get -5x.
-3z-5x=-6-15
Subtract 15 from both sides.
-3z-5x=-21
Subtract 15 from -6 to get -21.
-5x=-21+3z
Add 3z to both sides.
-5x=3z-21
The equation is in standard form.
\frac{-5x}{-5}=\frac{3z-21}{-5}
Divide both sides by -5.
x=\frac{3z-21}{-5}
Dividing by -5 undoes the multiplication by -5.
x=\frac{21-3z}{5}
Divide -21+3z by -5.
3\left(4-z\right)-\left(x-3\right)=2\left(2x-3\right)
Multiply both sides of the equation by 6, the least common multiple of 2,6,3.
12-3z-\left(x-3\right)=2\left(2x-3\right)
Use the distributive property to multiply 3 by 4-z.
12-3z-x+3=2\left(2x-3\right)
To find the opposite of x-3, find the opposite of each term.
15-3z-x=2\left(2x-3\right)
Add 12 and 3 to get 15.
15-3z-x=4x-6
Use the distributive property to multiply 2 by 2x-3.
-3z-x=4x-6-15
Subtract 15 from both sides.
-3z-x=4x-21
Subtract 15 from -6 to get -21.
-3z=4x-21+x
Add x to both sides.
-3z=5x-21
Combine 4x and x to get 5x.
\frac{-3z}{-3}=\frac{5x-21}{-3}
Divide both sides by -3.
z=\frac{5x-21}{-3}
Dividing by -3 undoes the multiplication by -3.
z=-\frac{5x}{3}+7
Divide 5x-21 by -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}