Solve for x
x\leq -31
Graph
Share
Copied to clipboard
6\left(4-x\right)+5\left(x+1\right)\geq 60
Multiply both sides of the equation by 30, the least common multiple of 5,6. Since 30 is positive, the inequality direction remains the same.
24-6x+5\left(x+1\right)\geq 60
Use the distributive property to multiply 6 by 4-x.
24-6x+5x+5\geq 60
Use the distributive property to multiply 5 by x+1.
24-x+5\geq 60
Combine -6x and 5x to get -x.
29-x\geq 60
Add 24 and 5 to get 29.
-x\geq 60-29
Subtract 29 from both sides.
-x\geq 31
Subtract 29 from 60 to get 31.
x\leq -31
Divide both sides by -1. Since -1 is negative, the inequality direction is changed.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}