Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4-i\right)\left(3-7i\right)}{\left(3+7i\right)\left(3-7i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3-7i.
\frac{\left(4-i\right)\left(3-7i\right)}{3^{2}-7^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4-i\right)\left(3-7i\right)}{58}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4\times 3+4\times \left(-7i\right)-i\times 3-\left(-7i^{2}\right)}{58}
Multiply complex numbers 4-i and 3-7i like you multiply binomials.
\frac{4\times 3+4\times \left(-7i\right)-i\times 3-\left(-7\left(-1\right)\right)}{58}
By definition, i^{2} is -1.
\frac{12-28i-3i-7}{58}
Do the multiplications in 4\times 3+4\times \left(-7i\right)-i\times 3-\left(-7\left(-1\right)\right).
\frac{12-7+\left(-28-3\right)i}{58}
Combine the real and imaginary parts in 12-28i-3i-7.
\frac{5-31i}{58}
Do the additions in 12-7+\left(-28-3\right)i.
\frac{5}{58}-\frac{31}{58}i
Divide 5-31i by 58 to get \frac{5}{58}-\frac{31}{58}i.
Re(\frac{\left(4-i\right)\left(3-7i\right)}{\left(3+7i\right)\left(3-7i\right)})
Multiply both numerator and denominator of \frac{4-i}{3+7i} by the complex conjugate of the denominator, 3-7i.
Re(\frac{\left(4-i\right)\left(3-7i\right)}{3^{2}-7^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4-i\right)\left(3-7i\right)}{58})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4\times 3+4\times \left(-7i\right)-i\times 3-\left(-7i^{2}\right)}{58})
Multiply complex numbers 4-i and 3-7i like you multiply binomials.
Re(\frac{4\times 3+4\times \left(-7i\right)-i\times 3-\left(-7\left(-1\right)\right)}{58})
By definition, i^{2} is -1.
Re(\frac{12-28i-3i-7}{58})
Do the multiplications in 4\times 3+4\times \left(-7i\right)-i\times 3-\left(-7\left(-1\right)\right).
Re(\frac{12-7+\left(-28-3\right)i}{58})
Combine the real and imaginary parts in 12-28i-3i-7.
Re(\frac{5-31i}{58})
Do the additions in 12-7+\left(-28-3\right)i.
Re(\frac{5}{58}-\frac{31}{58}i)
Divide 5-31i by 58 to get \frac{5}{58}-\frac{31}{58}i.
\frac{5}{58}
The real part of \frac{5}{58}-\frac{31}{58}i is \frac{5}{58}.