Evaluate
2-i
Real Part
2
Share
Copied to clipboard
\frac{4-\left(-1\right)}{2+i}
Calculate i to the power of 6 and get -1.
\frac{4+1}{2+i}
The opposite of -1 is 1.
\frac{5}{2+i}
Add 4 and 1 to get 5.
\frac{5\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2-i.
\frac{10-5i}{5}
Do the multiplications in \frac{5\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}.
2-i
Divide 10-5i by 5 to get 2-i.
Re(\frac{4-\left(-1\right)}{2+i})
Calculate i to the power of 6 and get -1.
Re(\frac{4+1}{2+i})
The opposite of -1 is 1.
Re(\frac{5}{2+i})
Add 4 and 1 to get 5.
Re(\frac{5\left(2-i\right)}{\left(2+i\right)\left(2-i\right)})
Multiply both numerator and denominator of \frac{5}{2+i} by the complex conjugate of the denominator, 2-i.
Re(\frac{10-5i}{5})
Do the multiplications in \frac{5\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}.
Re(2-i)
Divide 10-5i by 5 to get 2-i.
2
The real part of 2-i is 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}