Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4-8i\right)\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2+3i.
\frac{\left(4-8i\right)\left(2+3i\right)}{2^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4-8i\right)\left(2+3i\right)}{13}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4\times 2+4\times \left(3i\right)-8i\times 2-8\times 3i^{2}}{13}
Multiply complex numbers 4-8i and 2+3i like you multiply binomials.
\frac{4\times 2+4\times \left(3i\right)-8i\times 2-8\times 3\left(-1\right)}{13}
By definition, i^{2} is -1.
\frac{8+12i-16i+24}{13}
Do the multiplications in 4\times 2+4\times \left(3i\right)-8i\times 2-8\times 3\left(-1\right).
\frac{8+24+\left(12-16\right)i}{13}
Combine the real and imaginary parts in 8+12i-16i+24.
\frac{32-4i}{13}
Do the additions in 8+24+\left(12-16\right)i.
\frac{32}{13}-\frac{4}{13}i
Divide 32-4i by 13 to get \frac{32}{13}-\frac{4}{13}i.
Re(\frac{\left(4-8i\right)\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)})
Multiply both numerator and denominator of \frac{4-8i}{2-3i} by the complex conjugate of the denominator, 2+3i.
Re(\frac{\left(4-8i\right)\left(2+3i\right)}{2^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4-8i\right)\left(2+3i\right)}{13})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4\times 2+4\times \left(3i\right)-8i\times 2-8\times 3i^{2}}{13})
Multiply complex numbers 4-8i and 2+3i like you multiply binomials.
Re(\frac{4\times 2+4\times \left(3i\right)-8i\times 2-8\times 3\left(-1\right)}{13})
By definition, i^{2} is -1.
Re(\frac{8+12i-16i+24}{13})
Do the multiplications in 4\times 2+4\times \left(3i\right)-8i\times 2-8\times 3\left(-1\right).
Re(\frac{8+24+\left(12-16\right)i}{13})
Combine the real and imaginary parts in 8+12i-16i+24.
Re(\frac{32-4i}{13})
Do the additions in 8+24+\left(12-16\right)i.
Re(\frac{32}{13}-\frac{4}{13}i)
Divide 32-4i by 13 to get \frac{32}{13}-\frac{4}{13}i.
\frac{32}{13}
The real part of \frac{32}{13}-\frac{4}{13}i is \frac{32}{13}.