Evaluate
-\frac{23}{34}-\frac{41}{34}i\approx -0.676470588-1.205882353i
Real Part
-\frac{23}{34} = -0.6764705882352942
Share
Copied to clipboard
\frac{\left(4-7i\right)\left(3-5i\right)}{\left(3+5i\right)\left(3-5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3-5i.
\frac{\left(4-7i\right)\left(3-5i\right)}{3^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4-7i\right)\left(3-5i\right)}{34}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4\times 3+4\times \left(-5i\right)-7i\times 3-7\left(-5\right)i^{2}}{34}
Multiply complex numbers 4-7i and 3-5i like you multiply binomials.
\frac{4\times 3+4\times \left(-5i\right)-7i\times 3-7\left(-5\right)\left(-1\right)}{34}
By definition, i^{2} is -1.
\frac{12-20i-21i-35}{34}
Do the multiplications in 4\times 3+4\times \left(-5i\right)-7i\times 3-7\left(-5\right)\left(-1\right).
\frac{12-35+\left(-20-21\right)i}{34}
Combine the real and imaginary parts in 12-20i-21i-35.
\frac{-23-41i}{34}
Do the additions in 12-35+\left(-20-21\right)i.
-\frac{23}{34}-\frac{41}{34}i
Divide -23-41i by 34 to get -\frac{23}{34}-\frac{41}{34}i.
Re(\frac{\left(4-7i\right)\left(3-5i\right)}{\left(3+5i\right)\left(3-5i\right)})
Multiply both numerator and denominator of \frac{4-7i}{3+5i} by the complex conjugate of the denominator, 3-5i.
Re(\frac{\left(4-7i\right)\left(3-5i\right)}{3^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4-7i\right)\left(3-5i\right)}{34})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4\times 3+4\times \left(-5i\right)-7i\times 3-7\left(-5\right)i^{2}}{34})
Multiply complex numbers 4-7i and 3-5i like you multiply binomials.
Re(\frac{4\times 3+4\times \left(-5i\right)-7i\times 3-7\left(-5\right)\left(-1\right)}{34})
By definition, i^{2} is -1.
Re(\frac{12-20i-21i-35}{34})
Do the multiplications in 4\times 3+4\times \left(-5i\right)-7i\times 3-7\left(-5\right)\left(-1\right).
Re(\frac{12-35+\left(-20-21\right)i}{34})
Combine the real and imaginary parts in 12-20i-21i-35.
Re(\frac{-23-41i}{34})
Do the additions in 12-35+\left(-20-21\right)i.
Re(-\frac{23}{34}-\frac{41}{34}i)
Divide -23-41i by 34 to get -\frac{23}{34}-\frac{41}{34}i.
-\frac{23}{34}
The real part of -\frac{23}{34}-\frac{41}{34}i is -\frac{23}{34}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}