Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4-5i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2+i.
\frac{\left(4-5i\right)\left(2+i\right)}{2^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4-5i\right)\left(2+i\right)}{5}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4\times 2+4i-5i\times 2-5i^{2}}{5}
Multiply complex numbers 4-5i and 2+i like you multiply binomials.
\frac{4\times 2+4i-5i\times 2-5\left(-1\right)}{5}
By definition, i^{2} is -1.
\frac{8+4i-10i+5}{5}
Do the multiplications in 4\times 2+4i-5i\times 2-5\left(-1\right).
\frac{8+5+\left(4-10\right)i}{5}
Combine the real and imaginary parts in 8+4i-10i+5.
\frac{13-6i}{5}
Do the additions in 8+5+\left(4-10\right)i.
\frac{13}{5}-\frac{6}{5}i
Divide 13-6i by 5 to get \frac{13}{5}-\frac{6}{5}i.
Re(\frac{\left(4-5i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)})
Multiply both numerator and denominator of \frac{4-5i}{2-i} by the complex conjugate of the denominator, 2+i.
Re(\frac{\left(4-5i\right)\left(2+i\right)}{2^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4-5i\right)\left(2+i\right)}{5})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4\times 2+4i-5i\times 2-5i^{2}}{5})
Multiply complex numbers 4-5i and 2+i like you multiply binomials.
Re(\frac{4\times 2+4i-5i\times 2-5\left(-1\right)}{5})
By definition, i^{2} is -1.
Re(\frac{8+4i-10i+5}{5})
Do the multiplications in 4\times 2+4i-5i\times 2-5\left(-1\right).
Re(\frac{8+5+\left(4-10\right)i}{5})
Combine the real and imaginary parts in 8+4i-10i+5.
Re(\frac{13-6i}{5})
Do the additions in 8+5+\left(4-10\right)i.
Re(\frac{13}{5}-\frac{6}{5}i)
Divide 13-6i by 5 to get \frac{13}{5}-\frac{6}{5}i.
\frac{13}{5}
The real part of \frac{13}{5}-\frac{6}{5}i is \frac{13}{5}.