Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(21x-28\right)\left(4-3x\right)+\left(-7-7x\right)\left(x+1\right)=50\left(3x-4\right)\left(x+1\right)
Variable x cannot be equal to any of the values -1,\frac{4}{3} since division by zero is not defined. Multiply both sides of the equation by 7\left(3x-4\right)\left(x+1\right), the least common multiple of x+1,4-3x,7.
168x-63x^{2}-112+\left(-7-7x\right)\left(x+1\right)=50\left(3x-4\right)\left(x+1\right)
Use the distributive property to multiply 21x-28 by 4-3x and combine like terms.
168x-63x^{2}-112-14x-7-7x^{2}=50\left(3x-4\right)\left(x+1\right)
Use the distributive property to multiply -7-7x by x+1 and combine like terms.
154x-63x^{2}-112-7-7x^{2}=50\left(3x-4\right)\left(x+1\right)
Combine 168x and -14x to get 154x.
154x-63x^{2}-119-7x^{2}=50\left(3x-4\right)\left(x+1\right)
Subtract 7 from -112 to get -119.
154x-70x^{2}-119=50\left(3x-4\right)\left(x+1\right)
Combine -63x^{2} and -7x^{2} to get -70x^{2}.
154x-70x^{2}-119=\left(150x-200\right)\left(x+1\right)
Use the distributive property to multiply 50 by 3x-4.
154x-70x^{2}-119=150x^{2}-50x-200
Use the distributive property to multiply 150x-200 by x+1 and combine like terms.
154x-70x^{2}-119-150x^{2}=-50x-200
Subtract 150x^{2} from both sides.
154x-220x^{2}-119=-50x-200
Combine -70x^{2} and -150x^{2} to get -220x^{2}.
154x-220x^{2}-119+50x=-200
Add 50x to both sides.
204x-220x^{2}-119=-200
Combine 154x and 50x to get 204x.
204x-220x^{2}-119+200=0
Add 200 to both sides.
204x-220x^{2}+81=0
Add -119 and 200 to get 81.
-220x^{2}+204x+81=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-204±\sqrt{204^{2}-4\left(-220\right)\times 81}}{2\left(-220\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -220 for a, 204 for b, and 81 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-204±\sqrt{41616-4\left(-220\right)\times 81}}{2\left(-220\right)}
Square 204.
x=\frac{-204±\sqrt{41616+880\times 81}}{2\left(-220\right)}
Multiply -4 times -220.
x=\frac{-204±\sqrt{41616+71280}}{2\left(-220\right)}
Multiply 880 times 81.
x=\frac{-204±\sqrt{112896}}{2\left(-220\right)}
Add 41616 to 71280.
x=\frac{-204±336}{2\left(-220\right)}
Take the square root of 112896.
x=\frac{-204±336}{-440}
Multiply 2 times -220.
x=\frac{132}{-440}
Now solve the equation x=\frac{-204±336}{-440} when ± is plus. Add -204 to 336.
x=-\frac{3}{10}
Reduce the fraction \frac{132}{-440} to lowest terms by extracting and canceling out 44.
x=-\frac{540}{-440}
Now solve the equation x=\frac{-204±336}{-440} when ± is minus. Subtract 336 from -204.
x=\frac{27}{22}
Reduce the fraction \frac{-540}{-440} to lowest terms by extracting and canceling out 20.
x=-\frac{3}{10} x=\frac{27}{22}
The equation is now solved.
\left(21x-28\right)\left(4-3x\right)+\left(-7-7x\right)\left(x+1\right)=50\left(3x-4\right)\left(x+1\right)
Variable x cannot be equal to any of the values -1,\frac{4}{3} since division by zero is not defined. Multiply both sides of the equation by 7\left(3x-4\right)\left(x+1\right), the least common multiple of x+1,4-3x,7.
168x-63x^{2}-112+\left(-7-7x\right)\left(x+1\right)=50\left(3x-4\right)\left(x+1\right)
Use the distributive property to multiply 21x-28 by 4-3x and combine like terms.
168x-63x^{2}-112-14x-7-7x^{2}=50\left(3x-4\right)\left(x+1\right)
Use the distributive property to multiply -7-7x by x+1 and combine like terms.
154x-63x^{2}-112-7-7x^{2}=50\left(3x-4\right)\left(x+1\right)
Combine 168x and -14x to get 154x.
154x-63x^{2}-119-7x^{2}=50\left(3x-4\right)\left(x+1\right)
Subtract 7 from -112 to get -119.
154x-70x^{2}-119=50\left(3x-4\right)\left(x+1\right)
Combine -63x^{2} and -7x^{2} to get -70x^{2}.
154x-70x^{2}-119=\left(150x-200\right)\left(x+1\right)
Use the distributive property to multiply 50 by 3x-4.
154x-70x^{2}-119=150x^{2}-50x-200
Use the distributive property to multiply 150x-200 by x+1 and combine like terms.
154x-70x^{2}-119-150x^{2}=-50x-200
Subtract 150x^{2} from both sides.
154x-220x^{2}-119=-50x-200
Combine -70x^{2} and -150x^{2} to get -220x^{2}.
154x-220x^{2}-119+50x=-200
Add 50x to both sides.
204x-220x^{2}-119=-200
Combine 154x and 50x to get 204x.
204x-220x^{2}=-200+119
Add 119 to both sides.
204x-220x^{2}=-81
Add -200 and 119 to get -81.
-220x^{2}+204x=-81
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-220x^{2}+204x}{-220}=-\frac{81}{-220}
Divide both sides by -220.
x^{2}+\frac{204}{-220}x=-\frac{81}{-220}
Dividing by -220 undoes the multiplication by -220.
x^{2}-\frac{51}{55}x=-\frac{81}{-220}
Reduce the fraction \frac{204}{-220} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{51}{55}x=\frac{81}{220}
Divide -81 by -220.
x^{2}-\frac{51}{55}x+\left(-\frac{51}{110}\right)^{2}=\frac{81}{220}+\left(-\frac{51}{110}\right)^{2}
Divide -\frac{51}{55}, the coefficient of the x term, by 2 to get -\frac{51}{110}. Then add the square of -\frac{51}{110} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{51}{55}x+\frac{2601}{12100}=\frac{81}{220}+\frac{2601}{12100}
Square -\frac{51}{110} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{51}{55}x+\frac{2601}{12100}=\frac{1764}{3025}
Add \frac{81}{220} to \frac{2601}{12100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{51}{110}\right)^{2}=\frac{1764}{3025}
Factor x^{2}-\frac{51}{55}x+\frac{2601}{12100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{51}{110}\right)^{2}}=\sqrt{\frac{1764}{3025}}
Take the square root of both sides of the equation.
x-\frac{51}{110}=\frac{42}{55} x-\frac{51}{110}=-\frac{42}{55}
Simplify.
x=\frac{27}{22} x=-\frac{3}{10}
Add \frac{51}{110} to both sides of the equation.