Solve for x
x=-\frac{12}{25}=-0.48
Graph
Share
Copied to clipboard
3\left(4-3x\right)-24x=12-4\left(2x-3\right)
Multiply both sides of the equation by 12, the least common multiple of 4,3.
12-9x-24x=12-4\left(2x-3\right)
Use the distributive property to multiply 3 by 4-3x.
12-33x=12-4\left(2x-3\right)
Combine -9x and -24x to get -33x.
12-33x=12-8x+12
Use the distributive property to multiply -4 by 2x-3.
12-33x=24-8x
Add 12 and 12 to get 24.
12-33x+8x=24
Add 8x to both sides.
12-25x=24
Combine -33x and 8x to get -25x.
-25x=24-12
Subtract 12 from both sides.
-25x=12
Subtract 12 from 24 to get 12.
x=\frac{12}{-25}
Divide both sides by -25.
x=-\frac{12}{25}
Fraction \frac{12}{-25} can be rewritten as -\frac{12}{25} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}