Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4-3i\right)\left(-2-5i\right)}{\left(-2+5i\right)\left(-2-5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -2-5i.
\frac{\left(4-3i\right)\left(-2-5i\right)}{\left(-2\right)^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4-3i\right)\left(-2-5i\right)}{29}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4\left(-2\right)+4\times \left(-5i\right)-3i\left(-2\right)-3\left(-5\right)i^{2}}{29}
Multiply complex numbers 4-3i and -2-5i like you multiply binomials.
\frac{4\left(-2\right)+4\times \left(-5i\right)-3i\left(-2\right)-3\left(-5\right)\left(-1\right)}{29}
By definition, i^{2} is -1.
\frac{-8-20i+6i-15}{29}
Do the multiplications in 4\left(-2\right)+4\times \left(-5i\right)-3i\left(-2\right)-3\left(-5\right)\left(-1\right).
\frac{-8-15+\left(-20+6\right)i}{29}
Combine the real and imaginary parts in -8-20i+6i-15.
\frac{-23-14i}{29}
Do the additions in -8-15+\left(-20+6\right)i.
-\frac{23}{29}-\frac{14}{29}i
Divide -23-14i by 29 to get -\frac{23}{29}-\frac{14}{29}i.
Re(\frac{\left(4-3i\right)\left(-2-5i\right)}{\left(-2+5i\right)\left(-2-5i\right)})
Multiply both numerator and denominator of \frac{4-3i}{-2+5i} by the complex conjugate of the denominator, -2-5i.
Re(\frac{\left(4-3i\right)\left(-2-5i\right)}{\left(-2\right)^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4-3i\right)\left(-2-5i\right)}{29})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4\left(-2\right)+4\times \left(-5i\right)-3i\left(-2\right)-3\left(-5\right)i^{2}}{29})
Multiply complex numbers 4-3i and -2-5i like you multiply binomials.
Re(\frac{4\left(-2\right)+4\times \left(-5i\right)-3i\left(-2\right)-3\left(-5\right)\left(-1\right)}{29})
By definition, i^{2} is -1.
Re(\frac{-8-20i+6i-15}{29})
Do the multiplications in 4\left(-2\right)+4\times \left(-5i\right)-3i\left(-2\right)-3\left(-5\right)\left(-1\right).
Re(\frac{-8-15+\left(-20+6\right)i}{29})
Combine the real and imaginary parts in -8-20i+6i-15.
Re(\frac{-23-14i}{29})
Do the additions in -8-15+\left(-20+6\right)i.
Re(-\frac{23}{29}-\frac{14}{29}i)
Divide -23-14i by 29 to get -\frac{23}{29}-\frac{14}{29}i.
-\frac{23}{29}
The real part of -\frac{23}{29}-\frac{14}{29}i is -\frac{23}{29}.