Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4-3\sqrt{6}\right)\left(3\sqrt{6}+2\right)}{\left(3\sqrt{6}-2\right)\left(3\sqrt{6}+2\right)}
Rationalize the denominator of \frac{4-3\sqrt{6}}{3\sqrt{6}-2} by multiplying numerator and denominator by 3\sqrt{6}+2.
\frac{\left(4-3\sqrt{6}\right)\left(3\sqrt{6}+2\right)}{\left(3\sqrt{6}\right)^{2}-2^{2}}
Consider \left(3\sqrt{6}-2\right)\left(3\sqrt{6}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4-3\sqrt{6}\right)\left(3\sqrt{6}+2\right)}{3^{2}\left(\sqrt{6}\right)^{2}-2^{2}}
Expand \left(3\sqrt{6}\right)^{2}.
\frac{\left(4-3\sqrt{6}\right)\left(3\sqrt{6}+2\right)}{9\left(\sqrt{6}\right)^{2}-2^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(4-3\sqrt{6}\right)\left(3\sqrt{6}+2\right)}{9\times 6-2^{2}}
The square of \sqrt{6} is 6.
\frac{\left(4-3\sqrt{6}\right)\left(3\sqrt{6}+2\right)}{54-2^{2}}
Multiply 9 and 6 to get 54.
\frac{\left(4-3\sqrt{6}\right)\left(3\sqrt{6}+2\right)}{54-4}
Calculate 2 to the power of 2 and get 4.
\frac{\left(4-3\sqrt{6}\right)\left(3\sqrt{6}+2\right)}{50}
Subtract 4 from 54 to get 50.
\frac{12\sqrt{6}+8-9\left(\sqrt{6}\right)^{2}-6\sqrt{6}}{50}
Apply the distributive property by multiplying each term of 4-3\sqrt{6} by each term of 3\sqrt{6}+2.
\frac{12\sqrt{6}+8-9\times 6-6\sqrt{6}}{50}
The square of \sqrt{6} is 6.
\frac{12\sqrt{6}+8-54-6\sqrt{6}}{50}
Multiply -9 and 6 to get -54.
\frac{12\sqrt{6}-46-6\sqrt{6}}{50}
Subtract 54 from 8 to get -46.
\frac{6\sqrt{6}-46}{50}
Combine 12\sqrt{6} and -6\sqrt{6} to get 6\sqrt{6}.