Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4-3\sqrt{2}\right)\left(3+3\sqrt{2}\right)}{\left(3-3\sqrt{2}\right)\left(3+3\sqrt{2}\right)}
Rationalize the denominator of \frac{4-3\sqrt{2}}{3-3\sqrt{2}} by multiplying numerator and denominator by 3+3\sqrt{2}.
\frac{\left(4-3\sqrt{2}\right)\left(3+3\sqrt{2}\right)}{3^{2}-\left(-3\sqrt{2}\right)^{2}}
Consider \left(3-3\sqrt{2}\right)\left(3+3\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4-3\sqrt{2}\right)\left(3+3\sqrt{2}\right)}{9-\left(-3\sqrt{2}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(4-3\sqrt{2}\right)\left(3+3\sqrt{2}\right)}{9-\left(-3\right)^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(-3\sqrt{2}\right)^{2}.
\frac{\left(4-3\sqrt{2}\right)\left(3+3\sqrt{2}\right)}{9-9\left(\sqrt{2}\right)^{2}}
Calculate -3 to the power of 2 and get 9.
\frac{\left(4-3\sqrt{2}\right)\left(3+3\sqrt{2}\right)}{9-9\times 2}
The square of \sqrt{2} is 2.
\frac{\left(4-3\sqrt{2}\right)\left(3+3\sqrt{2}\right)}{9-18}
Multiply 9 and 2 to get 18.
\frac{\left(4-3\sqrt{2}\right)\left(3+3\sqrt{2}\right)}{-9}
Subtract 18 from 9 to get -9.
\frac{12+12\sqrt{2}-9\sqrt{2}-9\left(\sqrt{2}\right)^{2}}{-9}
Apply the distributive property by multiplying each term of 4-3\sqrt{2} by each term of 3+3\sqrt{2}.
\frac{12+3\sqrt{2}-9\left(\sqrt{2}\right)^{2}}{-9}
Combine 12\sqrt{2} and -9\sqrt{2} to get 3\sqrt{2}.
\frac{12+3\sqrt{2}-9\times 2}{-9}
The square of \sqrt{2} is 2.
\frac{12+3\sqrt{2}-18}{-9}
Multiply -9 and 2 to get -18.
\frac{-6+3\sqrt{2}}{-9}
Subtract 18 from 12 to get -6.