Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4-18i\right)\left(1-4i\right)}{\left(1+4i\right)\left(1-4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1-4i.
\frac{\left(4-18i\right)\left(1-4i\right)}{1^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4-18i\right)\left(1-4i\right)}{17}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4\times 1+4\times \left(-4i\right)-18i-18\left(-4\right)i^{2}}{17}
Multiply complex numbers 4-18i and 1-4i like you multiply binomials.
\frac{4\times 1+4\times \left(-4i\right)-18i-18\left(-4\right)\left(-1\right)}{17}
By definition, i^{2} is -1.
\frac{4-16i-18i-72}{17}
Do the multiplications in 4\times 1+4\times \left(-4i\right)-18i-18\left(-4\right)\left(-1\right).
\frac{4-72+\left(-16-18\right)i}{17}
Combine the real and imaginary parts in 4-16i-18i-72.
\frac{-68-34i}{17}
Do the additions in 4-72+\left(-16-18\right)i.
-4-2i
Divide -68-34i by 17 to get -4-2i.
Re(\frac{\left(4-18i\right)\left(1-4i\right)}{\left(1+4i\right)\left(1-4i\right)})
Multiply both numerator and denominator of \frac{4-18i}{1+4i} by the complex conjugate of the denominator, 1-4i.
Re(\frac{\left(4-18i\right)\left(1-4i\right)}{1^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4-18i\right)\left(1-4i\right)}{17})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4\times 1+4\times \left(-4i\right)-18i-18\left(-4\right)i^{2}}{17})
Multiply complex numbers 4-18i and 1-4i like you multiply binomials.
Re(\frac{4\times 1+4\times \left(-4i\right)-18i-18\left(-4\right)\left(-1\right)}{17})
By definition, i^{2} is -1.
Re(\frac{4-16i-18i-72}{17})
Do the multiplications in 4\times 1+4\times \left(-4i\right)-18i-18\left(-4\right)\left(-1\right).
Re(\frac{4-72+\left(-16-18\right)i}{17})
Combine the real and imaginary parts in 4-16i-18i-72.
Re(\frac{-68-34i}{17})
Do the additions in 4-72+\left(-16-18\right)i.
Re(-4-2i)
Divide -68-34i by 17 to get -4-2i.
-4
The real part of -4-2i is -4.