Evaluate
\frac{37y}{42}-\frac{25x}{42}-\frac{20}{7}
Expand
\frac{37y}{42}-\frac{25x}{42}-\frac{20}{7}
Share
Copied to clipboard
\frac{4\left(x-5\right)}{7}-\left(\frac{7\times 5\left(x-y\right)}{42}+\frac{2\left(7x-y\right)}{42}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and 21 is 42. Multiply \frac{5\left(x-y\right)}{6} times \frac{7}{7}. Multiply \frac{7x-y}{21} times \frac{2}{2}.
\frac{4\left(x-5\right)}{7}-\frac{7\times 5\left(x-y\right)+2\left(7x-y\right)}{42}
Since \frac{7\times 5\left(x-y\right)}{42} and \frac{2\left(7x-y\right)}{42} have the same denominator, add them by adding their numerators.
\frac{4\left(x-5\right)}{7}-\frac{35x-35y+14x-2y}{42}
Do the multiplications in 7\times 5\left(x-y\right)+2\left(7x-y\right).
\frac{4\left(x-5\right)}{7}-\frac{49x-37y}{42}
Combine like terms in 35x-35y+14x-2y.
\frac{6\times 4\left(x-5\right)}{42}-\frac{49x-37y}{42}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and 42 is 42. Multiply \frac{4\left(x-5\right)}{7} times \frac{6}{6}.
\frac{6\times 4\left(x-5\right)-\left(49x-37y\right)}{42}
Since \frac{6\times 4\left(x-5\right)}{42} and \frac{49x-37y}{42} have the same denominator, subtract them by subtracting their numerators.
\frac{24x-120-49x+37y}{42}
Do the multiplications in 6\times 4\left(x-5\right)-\left(49x-37y\right).
\frac{-25x-120+37y}{42}
Combine like terms in 24x-120-49x+37y.
\frac{4\left(x-5\right)}{7}-\left(\frac{7\times 5\left(x-y\right)}{42}+\frac{2\left(7x-y\right)}{42}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and 21 is 42. Multiply \frac{5\left(x-y\right)}{6} times \frac{7}{7}. Multiply \frac{7x-y}{21} times \frac{2}{2}.
\frac{4\left(x-5\right)}{7}-\frac{7\times 5\left(x-y\right)+2\left(7x-y\right)}{42}
Since \frac{7\times 5\left(x-y\right)}{42} and \frac{2\left(7x-y\right)}{42} have the same denominator, add them by adding their numerators.
\frac{4\left(x-5\right)}{7}-\frac{35x-35y+14x-2y}{42}
Do the multiplications in 7\times 5\left(x-y\right)+2\left(7x-y\right).
\frac{4\left(x-5\right)}{7}-\frac{49x-37y}{42}
Combine like terms in 35x-35y+14x-2y.
\frac{6\times 4\left(x-5\right)}{42}-\frac{49x-37y}{42}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and 42 is 42. Multiply \frac{4\left(x-5\right)}{7} times \frac{6}{6}.
\frac{6\times 4\left(x-5\right)-\left(49x-37y\right)}{42}
Since \frac{6\times 4\left(x-5\right)}{42} and \frac{49x-37y}{42} have the same denominator, subtract them by subtracting their numerators.
\frac{24x-120-49x+37y}{42}
Do the multiplications in 6\times 4\left(x-5\right)-\left(49x-37y\right).
\frac{-25x-120+37y}{42}
Combine like terms in 24x-120-49x+37y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}